global warming impact
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 49)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Mahsa Pakdin ◽  
Morteza Akbari ◽  
Mohamad Alizadeh Noughani

Abstract Climate change and global warming impact the frequency of droughts and supply systems. Therefore, it is necessary to conduct appropriate studies to evaluate the impact of climate change on weather patterns and drought. For this purpose, data from 6 synoptic stations located in the wet and temperate areas in the Zagros region in western Iran were used to construct four general atmospheric models including BCC-CSM1, CANESM2, HADGEM2-ES, NORESM1-M under representative concentration pathways (RCPs) 2.6, 4.5, and 8.5, for three future periods (2010-2039), (2040-2069) and (2070-2099). Then, spatio-temporal variations of drought severity and frequency were studied in the study area using SPI and SPEI indices in different periods up to 2100. The results showed the spatial extent of areas classified as extremely dry will increase by 47.9% in the first period compared to the base period. In the second and third periods, however, the severely dry class covers more area. Analysis of SPEI showed that drought will be more severe in all future periods. According to SPEI, drought frequency will increase by 2% according to the first period (2010-2039) relative to the base period (1984-2013), and by 0.3% in the second and third periods by 2099. The results of this study indicate that the severity, frequency, and impacts of drought will increase in the study area until the end of the century. Therefore, appropriate measures should be taken to control and reduce its potential effects in the future.


Author(s):  
Frances Roi Seston Tampubolon ◽  
Arief Sabdo Yuwono ◽  
Armansyah Halomoan Tambunan ◽  
Noer Azam Achsani

Coal mining processing and the clearing of land require that materials which have been removed be carefully inspected before it is reused. In this study, the boundary of our model starts with excavation and ends with material recovery. Therefore, further processing of the material to be recovered (recycling, reprocessing) is excluded from the model. In this study, the topsoil layer was collected in three pits numbered one, two, and three, from January to December 2020. The use of the LCA method gives results after the inventory data is carried out, which results in global warming. The results showed material removal unit process generated a total CO2 value of 32.44 kg CO2- eq.tonne-1 of coal, and the coal mining unit process generated a total CO2 value of 255.99 kg CO2- eq.tonne-1 of coal, for the impact of global warming. When compared to the material removal process, the results of the coal mining unit process show the highest global warming impact. Coal processing gives a yield of 25.61 kg CO2- eq.tonne-1 of coal. So that the resulting impact as a whole is 314 kg CO2- eq.tonne-1 of coal. The total emissions resulting from B30 fuel (314 kg CO2- eq.tonne-1 of coal) are smaller than B20 fuel (320 kg CO2- eq.tonne-1 of coal), 6 kg CO2-eq.tonne-1 of coal. The coal mining process includes fuel used in coal extraction, coal hauling, coal stockpiling, blasting, water pumps, and water tracks.


2021 ◽  
Vol 11 (23) ◽  
pp. 11188
Author(s):  
Maria Portarapillo ◽  
Enrico Danzi ◽  
Roberto Sanchirico ◽  
Luca Marmo ◽  
Almerinda Di Benedetto

The concern about global warming issues and their consequences is more relevant than ever, and the H2020 objectives promoted by the EU are oriented towards generating climate actions and sustainable development. The energy sector constitutes a difficult challenge as it plays a key role in the global warming impact. Its decarbonization is a crucial factor, and significant efforts are needed to find efficient alternatives to fossil fuels in heating/electricity generation. The biomass energy industry could have a contribution to make in the shift to renewable sources; the quest for a suitable material is basically focused on the energy amount that it stores, its availability, logistical considerations, and safety issues. This work deals with the characterization of a wine-waste dust sample, in terms of its chemical composition, fire behavior, and explosion violence. This material could be efficiently used in energy generation (via direct burning as pellets), but scarce information is present in terms of the fire and explosion hazards when it is pulverized. In the following, the material is analyzed through different techniques in order to clearly understand its ignition sensitivity and fire effects; accelerating aging treatment is also used to simulate the sample storage life and determine the ways in which this affects its flammability and likelihood of explosion.


2021 ◽  
Vol 2 ◽  
Author(s):  
Olga Kanz ◽  
Karsten Bittkau ◽  
Kaining Ding ◽  
Uwe Rau ◽  
Angèle Reinders

This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions, strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries, system sizes, evaluation methods, and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process, 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review, full identification of the sources of discrepancies (methods applied, assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems, it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.


Author(s):  
Katri Joensuu ◽  
Karoliina Rimhanen ◽  
Hannele Heusala ◽  
Merja Saarinen ◽  
Kirsi Usva ◽  
...  

Abstract Purpose Currently, there is no consensus on how the impacts of land use on the soil organic carbon (SOC) stocks would be best quantified within life cycle assessments (LCA) of agricultural products. The impacts of different decisions were tested within a model-based assessment of soil carbon changes on the life cycle global warming impact for spring wheat produced in two example regions in Finland (Southwest Finland and Northern Savonia) on mineral fields. Methods Global warming impact for spring wheat was assessed, including CO2 emissions due to the SOC change. The SOC change assessment was made with the soil carbon model Yasso07. The effects of assumptions on land use history were tested, i.e. the initialisation of the model and time horizon of the analysis (20 or 100 years) on the SOC change estimates. Other greenhouse gas emissions contributing to the global warming impact of spring wheat production were assessed using general LCA methodology taking into account the greenhouse gas emissions caused by the production of input materials and fuels, as well as direct and indirect N2O emissions from the soil due to fertilising and the decomposition of crop residues and organic matter, nitrogen leaching and volatilisation and lime application. Results and discussion The selection of the model initialisation method and timeframe remarkably affected the SOC change estimates. The global warming impact of wheat production, without accounting for SOC changes, was 0.68 and 0.89 kg CO2-eq/kg yield in Southwest Finland and Northern Savonia, respectively. The impact of SOC stock changes on the total global warming impact varied from –4 to 5% in Southwest Finland and from 5 to 21% in Northern Savonia, depending on the assumptions used to initialise the model or the timeframe applied in the analysis. Adding a cover crop as a means to increase the SOC stock removed between –67 and –26% of the total global warming impact in both regions. Conclusions It is essential that all the decisions made in the analysis are transparently reported and communicated. The choice of assumptions regarding the reference state, model initialisation and time horizon of the assessment period should be made based on the scope and goal definition of the LCA study.


Author(s):  
Giovani Rodolfo Alatrista Gongora ◽  
Ray Hangyong Lu ◽  
Ali El Hanandeh

Abstract Life Cycle Assessment was used to evaluate onsite wastewater treatment systems (OWTS): aerobic treatment unit (ATU) with reinforced concrete (C.ATU) and HDPE (H.ATU) tank; and constructed wetland (CW) with three biochar concentrations in the substrate (0%; 10, and 20% v:v), dubbed CW.BC0, CW.BC10 and CW.BC20, respectively. CML 2001 in SimaPro® was used to evaluate the impacts of the treatment of 1 m3 wastewater. The OWTS were compared on their overall environmental performance scores (OEP). ATUs have higher impacts on human toxicity, eutrophication, freshwater and marine ecotoxicity. The CW.BC20 has the lowest global warming impact (GWP) while CW.BC0 has the highest. Electricity consumption was the largest contributor to the impacts of the ATUs. PVC pipes, coir peat, geomembrane, and electronic devices were the biggest contributors to the impacts of the CWs. The OEP of the CWs were almost a third of the ATUs’ (6.07E-03). Changes in electricity sources were tested according to the 2030-Australian targets; increasing renewables share improves the OEP of ATUs by 39%; nevertheless, CWs continue to outperform the ATUs. Variations in biochar biodegradation has small effect on the OEP of CWs; being relevant only to GWP. This study provides a reference to policy makers for better evaluation of OWTS.


2021 ◽  
Vol 11 (15) ◽  
pp. 7123
Author(s):  
Morteza Ghanbarpour ◽  
Adrián Mota-Babiloni ◽  
Bassam E. Badran ◽  
Rahmatollah Khodabandeh

This study provides a global warming impact analysis of environmentally friendly refrigerants used as replacements for R134a and R245fa. R290, R1234yf, R1234ze(E), R513A and R450A are considered as refrigerants to replace R134a in medium temperature applications. For R245fa, there are five alternative refrigerants, R1224yd(Z), R600, R1336mzz(Z), R1233zd(E) and R1234ze(Z), which are selected for high-temperature applications. The analysis is done considering the emission factors in Brazil, Sweden, Canada and Poland. In Sweden and Brazil, the total equivalent warming impact per heating capacity of R134a is higher than its alternative refrigerants in medium temperature application, although R134a exhibits a higher coefficient of performance than its alternatives. In high-temperature applications, R1336mzz(Z) has the lowest total equivalent warming impact per heating capacity due to its higher coefficient of performance than other tested refrigerants. The highest total equivalent warming impact per heating capacity belongs to R245fa in all countries except in Poland, where R600 exhibits a higher value due to its lower coefficient of performance and the relatively higher emission factor in Poland compared to other selected countries. These results revealed that in addition to the global warming potential, the emission factor associated with the sources of electricity generation has a crucial impact on indirect emissions.


Sign in / Sign up

Export Citation Format

Share Document