scholarly journals On the Sensitivity of Convectively Coupled Equatorial Waves to the Quasi-Biennial Oscillation

2019 ◽  
Vol 32 (18) ◽  
pp. 5833-5847 ◽  
Author(s):  
S. Abhik ◽  
Harry H. Hendon ◽  
Matthew C. Wheeler

Abstract The seasonal-mean variance of the Madden–Julian oscillation (MJO) in austral summer has recently been shown to be significantly (p < 5%) enhanced during easterly phases of the quasi-biennial oscillation (QBO). The impact is large, with the mean MJO variance increasing by ~50% compared to the QBO westerly phase. In contrast, we show using observed outgoing longwave radiation that seasonal variations for convectively coupled equatorial Kelvin, Rossby, and mixed Rossby–gravity waves are insensitive to the QBO. This insensitivity extends to all high-frequency (2–30-day period) and the non-MJO component of the intraseasonal (30–120-day period) convective variance. However, convectively coupled Kelvin wave variability shows a modest increase (~13%) that is marginally significant (p = 10%) during easterly phases of the QBO in austral autumn, when Kelvin wave activity is seasonally strongest along the equator. The mechanism of impact on the Kelvin wave appears to be similar to what has previously been argued for the MJO during austral summer. However, the more tilted and shallower vertical structure of the Kelvin waves suggests that they cannot tap into the extra destabilization at the tropopause provided by the easterly phase of the QBO as effectively as the MJO. Lack of impact on the convectively coupled Rossby and mixed Rossby–gravity waves is argued to stem from their horizontal structure that results in weaker divergent anomalies along the equator, where the QBO impact is greatest. Our results further emphasize that the MJO in austral summer is uniquely affected by the QBO.

2007 ◽  
Vol 64 (12) ◽  
pp. 4400-4416 ◽  
Author(s):  
Hirohiko Masunaga

Abstract The Madden–Julian oscillation (MJO), Kelvin wave, and equatorial Rossby (ER) wave—collectively called intraseasonal oscillations (ISOs)—are investigated using a 25-yr record of outgoing longwave radiation (OLR) measurements as well as the associated dynamical fields. The ISO modes are detected by applying bandpass filters to the OLR data in the frequency–wavenumber space. An automated wave-tracking algorithm is applied to each ISO mode so that convection centers accompanied with the ISOs are traced in space and time in an objective fashion. The identified paths of the individual ISO modes are first examined and found strongly modulated regionally and seasonally. The dynamical structure is composited with respect to the convection centers of each ISO mode. A baroclinic mode of the combined Rossby and Kelvin structure is prominent for the MJO, consistent with existing work. The Kelvin wave exhibits a low-level wind field resembling the shallow-water solution, while a slight lead of low-level convergence over convection suggests the impact of frictional boundary layer convergence on Kelvin wave dynamics. A lagged composite analysis reveals that the MJO is accompanied with a Kelvin wave approaching from the west preceding the MJO convective maximum in austral summer. MJO activity then peaks as the Kelvin and ER waves constructively interfere to enhance off-equatorial boundary layer convergence. The MJO leaves a Kelvin wave emanating to the east once the peak phase is passed. The approaching Kelvin wave prior to the development of MJO convection is absent in boreal summer and fall. The composite ER wave, loosely concentrated around the MJO, is nearly stationary throughout. A possible scenario to physically translate the observed result is also discussed.


2012 ◽  
Vol 69 (10) ◽  
pp. 2959-2982 ◽  
Author(s):  
Gui-Ying Yang ◽  
Brian Hoskins ◽  
Lesley Gray

Abstract The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear. In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.


2018 ◽  
Vol 76 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Rolando R. Garcia ◽  
Jadwiga H. Richter

Abstract This study documents the contribution of equatorial waves and mesoscale gravity waves to the momentum budget of the quasi-biennial oscillation (QBO) in a 110-level version of the Whole Atmosphere Community Climate Model. The model has high vertical resolution, 500 m, above the boundary layer and through the lower and middle stratosphere, decreasing gradually to about 1.5 km near the stratopause. Parameterized mesoscale gravity waves and resolved equatorial waves contribute comparable easterly and westerly accelerations near the equator. Westerly acceleration by resolved waves is due mainly to Kelvin waves of zonal wavenumber in the range k = 1–15 and is broadly distributed about the equator. Easterly acceleration near the equator is due mainly to Rossby–gravity (RG) waves with zonal wavenumbers in the range k = 4–12. These RG waves appear to be generated in situ during both the easterly and westerly phases of the QBO, wherever the meridional curvature of the equatorial westerly jet is large enough to produce reversals of the zonal-mean barotropic vorticity gradient, suggesting that they are excited by the instability of the jet. The RG waves produce a characteristic pattern of Eliassen–Palm flux divergence that includes strong easterly acceleration close to the equator and westerly acceleration farther from the equator, suggesting that the role of the RG waves is to redistribute zonal-mean vorticity such as to neutralize the instability of the westerly jet. Insofar as unstable RG waves might be present in the real atmosphere, mixing due to these waves could have important implications for transport in the tropical stratosphere.


2021 ◽  
Author(s):  
John King ◽  
Gareth Marshall ◽  
Steve Colwell ◽  
Clare Allen-Sader ◽  
Tony Phillips

<p> </p><p>Global atmospheric reanalyses are frequently used to drive ocean-ice models but few data are available to assess the quality of these products in the Antarctic sea ice zone. We utilise measurements from three drifting buoys that were deployed on sea ice in the southern Weddell Sea in the austral summer of 2016 to validate the representation of near-surface atmospheric conditions in the ERA-Interim and ERA5 reanalyses produced by the European Centre for Medium Range Weather Forecasts (ECMWF). The buoys carried sensors to measure atmospheric pressure, air temperature and humidity, wind speed and direction, and downwelling shortwave and longwave radiation. One buoy remained in coastal fast ice for most of 2016 while the other two drifted northward through the austral winter and exited the pack ice during the following austral summer. Comparison of buoy measurements with reanalysis data indicates that both reanalyses represent the surface pressure field in this region accurately. Reanalysis temperatures are, however, biased warm by around 2 °C in both products, with the largest biases seen at the lowest temperatures. We suggest that this bias is a result of the simplified representation of sea ice in the reanalyses, in particular the lack of an insulating snow layer on top of the ice. We use a simple surface energy balance model to investigate the impact of the reanalysis biases on sea ice thermodynamics.</p>


2017 ◽  
Vol 74 (4) ◽  
pp. 1105-1125 ◽  
Author(s):  
Eriko Nishimoto ◽  
Shigeo Yoden

Abstract Influence of the stratospheric quasi-biennial oscillation (QBO) on the Madden–Julian oscillation (MJO) and its statistical significance are examined for austral summer (DJF) in neutral ENSO events during 1979–2013. The amplitude of the OLR-based MJO index (OMI) is typically larger in the easterly phase of the QBO at 50 hPa (E-QBO phase) than in the westerly (W-QBO) phase. Daily composite analyses are performed by focusing on phase 4 of the OMI, when the active convective system is located over the eastern Indian Ocean through the Maritime Continent. The composite OLR anomaly shows a larger negative value and slower eastward propagation with a prolonged period of active convection in the E-QBO phase than in the W-QBO phase. Statistically significant differences of the MJO activities between the QBO phases also exist with dynamical consistency in the divergence of horizontal wind, the vertical wind, the moisture, the precipitation, and the 100-hPa temperature. A conditional sampling analysis is also performed by focusing on the most active convective region for each day, irrespective of the MJO amplitude and phase. Composite vertical profiles of the conditionally sampled data over the most active convective region reveal lower temperature and static stability around the tropopause in the E-QBO phase than in the W-QBO phase, which indicates more favorable conditions for developing deep convection. This feature is more prominent and extends into lower levels in the upper troposphere over the most active convective region than other tropical regions. Composite longitude–height sections show similar features of the large-scale convective system associated with the MJO, including a vertically propagating Kelvin response.


2020 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun ◽  
Rolando R. Garcia

Abstract. In February 2016, the descent of the westerly phase of the quasi-biennial oscillation (QBO) was unprecedentedly disrupted by the development of easterly winds. Previous studies have shown that extratropical Rossby waves propagating into the deep Tropics were the major cause of the 2015–16 QBO disruption. However, a large portion of the negative momentum forcing associated with the disruption still stems from equatorial planetary and small-scale gravity waves, which calls for detailed analyses by separating each wave mode compared with climatological QBO cases. Here, the contributions of resolved equatorial planetary waves [Kelvin, Rossby, mixed-Rossby gravity (MRG), and inertia-gravity (IG) waves] and small-scale convective gravity waves (CGWs) obtained from an offline CGW parameterization to the 2015–16 QBO disruption are investigated using MERRA-2 global reanalysis data from October 2015 to February 2016. In October and November 2015, anomalously strong negative forcing by MRG and IG waves weakened the QBO jet at 0°–5° S near 40 hPa, leading to Rossby wave breaking at the QBO jet core in the southern hemisphere. From December 2015 to January 2016, exceptionally strong Rossby waves propagating horizontally (vertically) continuously decelerated the southern (northern) flank of the jet. In February 2016, when the westward CGW momentum flux at the source level was much stronger than its climatology, CGWs began to exert considerable negative forcing at 40–50 hPa near the equator, in addition to the Rossby waves. The enhancement of the negative wave forcing in the Tropics stems mostly from strong wave activity in the troposphere associated with increased convective activity and the strong westerlies (or weaker easterlies) in the troposphere, except that the MRG wave forcing is more likely associated with increased barotropic instability in the lower stratosphere.


2021 ◽  
Author(s):  
Chaim I Garfinkel ◽  
Edwin P Gerber ◽  
Ofer Shamir ◽  
Jian Rao ◽  
Martin Jucker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document