scholarly journals Interannual to Decadal Variability of Tropical Indian Ocean Sea Surface Temperature: Pacific Influence versus Local Internal Variability

2020 ◽  
pp. 1-50
Author(s):  
Lei Zhang ◽  
Gang Wang ◽  
Matthew Newman ◽  
Weiqing Han

AbstractThe Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.

2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2007 ◽  
Vol 20 (13) ◽  
pp. 3164-3189 ◽  
Author(s):  
H. Annamalai ◽  
H. Okajima ◽  
M. Watanabe

Abstract Two atmospheric general circulation models (AGCMs), differing in numerics and physical parameterizations, are employed to test the hypothesis that El Niño–induced sea surface temperature (SST) anomalies in the tropical Indian Ocean impact considerably the Northern Hemisphere extratropical circulation anomalies during boreal winter [January–March +1 (JFM +1)] of El Niño years. The hypothesis grew out of recent findings that ocean dynamics influence SST variations over the southwest Indian Ocean (SWIO), and these in turn impact local precipitation. A set of ensemble simulations with the AGCMs was carried out to assess the combined and individual effects of tropical Pacific and Indian Ocean SST anomalies on the extratropical circulation. To elucidate the dynamics responsible for the teleconnection, solutions were sought from a linear version of one of the AGCMs. Both AGCMs demonstrate that the observed precipitation anomalies over the SWIO are determined by local SST anomalies. Analysis of the circulation response shows that over the Pacific–North American (PNA) region, the 500-hPa height anomalies, forced by Indian Ocean SST anomalies, oppose and destructively interfere with those forced by tropical Pacific SST anomalies. The model results validated with reanalysis data show that compared to the runs where only the tropical Pacific SST anomalies are specified, the root-mean-square error of the height anomalies over the PNA region is significantly reduced in runs in which the SST anomalies in the Indian Ocean are prescribed in addition to those in the tropical Pacific. Among the ensemble members, both precipitation anomalies over the SWIO and the 500-hPa height over the PNA region show high potential predictability. The solutions from the linear model indicate that the Rossby wave packets involved in setting up the teleconnection between the SWIO and the PNA region have a propagation path that is quite different from the classical El Niño–PNA linkage. The results of idealized experiments indicate that the Northern Hemisphere extratropical response to Indian Ocean SST anomalies is significant and the effect of this response needs to be considered in understanding the PNA pattern during El Niño years. The results presented herein suggest that the tropical Indian Ocean plays an active role in climate variability and that accurate observation of SST there is of urgent need.


2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


2014 ◽  
Vol 28 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Yongjing Zhao ◽  
Sumant Nigam

Abstract The claim for a zonal-dipole structure in interannual variations of the tropical Indian Ocean (IO) SSTs—the Indian Ocean dipole (IOD)—is reexamined after accounting for El Niño–Southern Oscillation’s (ENSO) influence. The authors seek an a priori accounting of ENSO’s seasonally stratified influence on IO SSTs and evaluate the basis of the related dipole mode index, instead of seeking a posteriori adjustments to this index, as common. Scant observational evidence is found for zonal-dipole SST variations after removal of ENSO’s influence from IO SSTs: The IOD poles are essentially uncorrelated in the ENSO-filtered SSTs in both recent (1958–98) and century-long (1900–2007) periods, leading to the breakdown of zonal-dipole structure in surface temperature variability; this finding does not depend on the subtleties in estimation of ENSO’s influence. Deconstruction of the fall 1994 and 1997 SST anomalies led to their reclassification, with a weak IOD in 1994 and none in 1997. Regressions of the eastern IOD pole on upper-ocean heat content, however, do exhibit a zonal-dipole structure but with the western pole in the central-equatorial IO, suggesting that internally generated basin variability can have zonal-dipole structure at the subsurface. The IO SST variability was analyzed using the extended-EOF technique, after removing the influence of Pacific SSTs; the technique targets spatial and temporal recurrence and extracts modes (rather than patterns) of variability. This spatiotemporal analysis also does not support the existence of zonal-dipole variability at the surface. However, the analysis did yield a dipole-like structure in the meridional direction in boreal fall/winter, when it resembles the subtropical IOD pattern (but not the evolution time scale).


2007 ◽  
Vol 20 (13) ◽  
pp. 3083-3105 ◽  
Author(s):  
Annalisa Cherchi ◽  
Silvio Gualdi ◽  
Swadhin Behera ◽  
Jing Jia Luo ◽  
Sebastien Masson ◽  
...  

Abstract The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the coupled manifold, is used to investigate the TIO SST variability and its relation with the tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.


2017 ◽  
Vol 30 (12) ◽  
pp. 4755-4761 ◽  
Author(s):  
Lin Liu ◽  
Guang Yang ◽  
Xia Zhao ◽  
Lin Feng ◽  
Guoqing Han ◽  
...  

The Indian Ocean witnessed a weak positive Indian Ocean dipole (IOD) event from the boreal summer to autumn in 2015, while an extreme El Niño occurred over the tropical Pacific. This was different from the case in 1997/98, when an extreme El Niño and the strongest IOD took place simultaneously. The analysis here suggests that the unique sea surface temperature anomaly (SSTA) pattern of El Niño in 2015 might have contributed to the weak IOD that year. El Niño in 2015 had a complex SSTA pattern, with positive warming over the central and eastern tropical Pacific. Such a combination of the classic El Niño (also known as cold-tongue El Niño) and the recently identified central Pacific El Niño (also known as El Niño Modoki II) had opposite remote influences on the tropical Indian Ocean. The classic El Niño reduced the strength of the Walker circulation over the tropical Indian Ocean, but this was offset by El Niño Modoki II. This study points out that the IOD can be strongly modulated by combined El Niño types in some circumstances, as in 2015.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2004 ◽  
Vol 17 (2) ◽  
pp. 362-372 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Michael A. Alexander ◽  
Harry H. Hendon

2021 ◽  
Author(s):  
Belen Rodríguez de Fonseca ◽  
Veronica Martín-Gómez ◽  
Jose María Aliganga

<p>Interaction between the tropical Pacific, Atlantic, and Indian Ocean basins is increasingly recognized as a key factor in understanding climate variability on interannual to decadal timescales. Most of the studies deal with the connection between pair of basins and less attention has been paid to analyze the degree of collective interaction among the three tropical oceans and its variability along time.In this study, we consider a complex network perspective to analyze the collective connectivity among the three tropical basins. To do so, we first construct a climate network considering as network’ nodes the indices that represent the variability of the SST over the tropical Pacific, the tropical north Atlantic, the equatorial Atlantic and the tropical Indian Ocean. Then, we focus on detecting periods of maximum degree of collective connectivity (synchronization periods) using the mean network distance definition.Results show that the degree of collective connectivity among the three tropical oceans present a large muti-decadal variability and that during the observed period there were two synchronization periods: one developed over the period (1900-1935) and the other from 1975 to present. A period center in the 1950’s is characterized by being the three basins uncoupled .Using this information, an analysis of background conditions in the ocean and the atmosphere has been conducted in order to elucidate causes for this change in connectivity.</p>


Sign in / Sign up

Export Citation Format

Share Document