scholarly journals Seasonal prediction and predictability of regional Antarctic sea ice

2021 ◽  
pp. 1-68
Author(s):  
Mitchell Bushuk ◽  
Michael Winton ◽  
F. Alexander Haumann ◽  
Thomas Delworth ◽  
Feiyu Lu ◽  
...  

AbstractCompared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales.

2014 ◽  
Vol 27 (10) ◽  
pp. 3784-3801 ◽  
Author(s):  
Paul R. Holland ◽  
Nicolas Bruneau ◽  
Clare Enright ◽  
Martin Losch ◽  
Nathan T. Kurtz ◽  
...  

Abstract Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater supply from the Antarctic Ice Sheet. Similarly to the observed ice concentration trends, the small overall increase in modeled ice volume is actually the residual of much larger opposing regional trends. Thickness changes near the ice edge follow observed concentration changes, with increasing concentration corresponding to increased thickness. Ice thickness increases are also found in the inner pack in the Amundsen and Weddell Seas, where the model suggests that observed ice-drift trends directed toward the coast have caused dynamical thickening in autumn and winter. Modeled changes are predominantly dynamic in origin in the Pacific sector and thermodynamic elsewhere.


2021 ◽  
Author(s):  
Daniela Flocco ◽  
Ed Hawkins ◽  
Leandro Ponsoni ◽  
François Massonnett ◽  
Daniel Feltham ◽  
...  

<p>Assimilation of sea ice concentration satellite products has successfully been used to initialize sea ice models and coupled NWP systems. Sea-ice thickness observations, being much less mature, are typically not assimilated. However, many studies suggest that initialization of winter sea-ice thickness could lead to improved prediction of Arctic summer sea ice. We have examined the potential for sea ice thickness observations to improve forecast skill on timescales from days to a year ahead in two state-of-the-art coupled GCMs.</p><p>Here we examine the influence of Arctic sea-ice thickness observations on the potential predictability of the sea-ice and atmospheric circulation using idealised ‘data denial’ experiments. We perform paired sets of ensembles with the HadGEM3 and EC-Earth GCMs using different initial conditions retrieved from present-day control runs.</p><p>One set of ensembles start with complete information about the sea-ice conditions and is treated as “truth”, and one set has degraded sea ice information. We investigate how the pairs of ensembles, all started in January, predict the subsequent evolution of the sea-ice state, sea level pressure and circulation within the Arctic with the aim of quantifying the value of sea-ice observations for improving predictions.</p><p>We show that accurate initialization of sea ice thickness improves the model prediction skill during the first month of simulation and that several sea ice state and atmospheric variables present a re-emergence of skill in September. Prediction skill of several oceanic variables is also observed. The two models present a good agreement in terms of the regions where they show either a skill gain or loss.</p>


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2018 ◽  
Author(s):  
Maria Belmonte Rivas ◽  
Ines Otosaka ◽  
Ad Stoffelen ◽  
Anton Verhoef

Abstract. This paper presents the first long-term climate data record of sea ice extents and backscatter derived from inter-calibrated satellite scatterometer missions (ERS, QuikSCAT and ASCAT) extending from 1992 to present date. This record provides a valuable independent account of the evolution of Arctic and Antarctic sea ice extents, one that is in excellent agreement with the passive microwave records during the fall and winter months but shows higher sensitivity to lower concentration and melting sea ice during the spring and summer months, providing a means to correct for summer melt ponding errors. The scatterometer record also provides a depiction of sea ice backscatter at C and Ku-band, allowing the separation of seasonal and perennial sea ice in the Arctic, and further differentiation between second year (SY) and older multiyear (MY) ice classes, revealing the emergence of SY ice as the dominant perennial ice type after the record sea ice loss in 2007, and bearing new evidence on the loss of multiyear ice in the Arctic over the last 25 years. The relative good agreement between the backscatter-based sea ice (FY, SY and older MY) classes and the ice thickness record from Cryosat suggests its applicability as a reliable proxy in the historical reconstruction of sea ice thickness in the Arctic.


2021 ◽  
Author(s):  
Emma Kathleen Fiedler ◽  
Matthew Martin ◽  
Ed Blockley ◽  
Davi Mignac ◽  
Nicolas Fournier ◽  
...  

Abstract. The feasibility of assimilating SIT (sea ice thickness) observations derived from CryoSat-2 along-track measurements of sea ice freeboard is successfully demonstrated using a 3D-Var assimilation scheme, NEMOVAR, within the Met Office’s global, coupled ocean-sea ice model, FOAM (Forecast Ocean Assimilation Model). The Arctic freeboard measurements are produced by CPOM (Centre for Polar Observation and Modelling) and are converted to SIT within FOAM using modelled snow depth. This is the first time along-track observations of SIT have been used in this way, with other centres assimilating gridded and temporally-averaged observations. The assimilation greatly improves the SIT analysis and forecast fields generated by FOAM, particularly in the Canadian Arctic. Arctic-wide observation-minus-background assimilation statistics show improvements of 0.75 m mean difference and 0.41 m RMSD (root-mean-square difference) in the freeze-up period, and 0.46 m mean difference and 0.33 m RMSD in the ice break-up period, for 2015–2017. Validation of the SIT analysis against independent springtime in situ SIT observations from NASA Operation IceBridge shows improvement in the SIT analysis of 0.61 m mean difference (0.42 m RMSD) compared to a control without SIT assimilation. Similar improvements are seen in the FOAM 5-day SIT forecast. Validation of the SIT assimilation with independent BGEP (Beaufort Gyre Exploration Project) sea ice draft observations does not show an improvement, since the assimilated CryoSat-2 observations compare similarly to the model without assimilation in this region. Comparison with Air-EM (airborne electromagnetic induction) combined measurements of SIT and snow depth shows poorer results for the assimilation compared to the control, which may be evidence of noise in the SIT analysis, sampling error, or uncertainties in the modelled snow depth, the assimilated observations, or the validation observations themselves. The SIT analysis could be improved by upgrading the observation uncertainties used in the assimilation. Despite the lack of CryoSat-2 SIT observations over the summer due to the effect of meltponds on retrievals, it is shown that the model is able to retain improvements to the SIT field throughout the summer months, due to previous SIT assimilation. This also leads to regional improvements in the July SIC (sea ice concentration) of 5 % RMSD in the European sector, due to slower melt of the thicker modelled sea ice.


2020 ◽  
Author(s):  
Linette Boisvert ◽  
Joseph MacGregor ◽  
Brooke Medley ◽  
Nathan Kurtz ◽  
Ron Kwok ◽  
...  

<p>NASA’s Operation IceBridge (OIB) was a multi-year, multi-platform, airborne mission which took place between 2009-2019. OIB was designed and implemented to continue monitoring the changing sea ice and ice sheets in both the Arctic and Antarctic by ‘bridging the gap’ between NASA’s ICESat (2003–2009) and ICESat-2 (launched September 2018) satellite missions. OIB’s instrument suite most often consisted of laser altimeters, radar sounders, gravimeters and multi-spectral imagers. These instruments were selected to study polar sea ice thickness, ice sheet elevation, snow and ice thickness, surface temperature and bathymetry. With the launch of ICESat-2, the final year of OIB consisted of three campaigns designed to under fly the satellite: 1) the end of the Arctic growth season (spring), 2) during the Arctic summer to capture many different types of melting surfaces, and 3) the Antarctic spring to cover an entirely new area of East Antarctica. Over this ten-year period a coherent picture of Arctic and Antarctic sea ice and snow thickness and other properties have been produced and monitored. Specifically, OIB has changed the community’s perspective of snow on sea ice in the Arctic. Over the decade, OIB has also been used to validate other satellite altimeter missions like ESA’s CryoSat-2. Since the launch of ICESat-2, coincident OIB under flights with the satellite were crucial for measuring sea ice properties. With sea ice constantly in motion, and the differences in OIB aircraft and ICESat-2 ground speed, there can substantial drift in the sea ice pack over the same ground track distance being measured.Therefore, we had to design and implement sea ice drift trajectories based on low level winds measured from the aircraft in flight, adjusting our plane’s path accordingly so we could measure the same sea ice as ICESat-2. This was implemented in both the Antarctic 2018 and Arctic 2019 campaigns successfully. Specifically, the Spring Arctic 2019 campaign allowed for validation of ICESat-2 freeboards with OIB ATM freeboards proving invaluable to the success of ICESat-2 and the future of sea ice research to come from these missions.</p><p> </p>


2018 ◽  
Vol 12 (9) ◽  
pp. 2941-2953 ◽  
Author(s):  
Maria Belmonte Rivas ◽  
Ines Otosaka ◽  
Ad Stoffelen ◽  
Anton Verhoef

Abstract. This paper presents the first long-term climate data record of sea ice extents and backscatter derived from intercalibrated satellite scatterometer missions (ERS, QuikSCAT and ASCAT) extending from 1992 to the present date (Verhoef et al., 2018). This record provides a valuable independent account of the evolution of Arctic and Antarctic sea ice extents, one that is in excellent agreement with the passive microwave records during the fall and winter months but shows higher sensitivity to lower concentration and melting sea ice during the spring and summer months. The scatterometer record also provides a depiction of sea ice backscatter at C- and Ku-bands, allowing the separation of seasonal and perennial sea ice in the Arctic and further differentiation between second-year (SY) and older multiyear (MY) ice classes, revealing the emergence of SY ice as the dominant perennial ice type after the historical sea ice loss in 2007 and bearing new evidence on the loss of multiyear ice in the Arctic over the last 25 years. The relative good agreement between the backscatter-based sea ice (FY, SY and older MY) classes and the ice thickness record from Cryosat suggests its applicability as a reliable proxy in the historical reconstruction of sea ice thickness in the Arctic.


2019 ◽  
Vol 13 (12) ◽  
pp. 3209-3224 ◽  
Author(s):  
Chao Min ◽  
Longjiang Mu ◽  
Qinghua Yang ◽  
Robert Ricker ◽  
Qian Shi ◽  
...  

Abstract. Sea ice volume export through the Fram Strait plays an important role in the Arctic freshwater and energy redistribution. The combined model and satellite sea ice thickness (CMST) data set assimilates CryoSat-2 and soil moisture and ocean salinity (SMOS) thickness products together with satellite sea ice concentration. The CMST data set closes the gap of stand-alone satellite-derived sea ice thickness in summer and therefore allows us to estimate sea ice volume export during the melt season. In this study, we first validate the CMST data set using field observations, and then we estimate the continuous seasonal and interannual variations in Arctic sea ice volume flux through the Fram Strait from September 2010 to December 2016. The results show that seasonal and interannual sea ice volume export vary from about -240(±40) to -970(±60) km3 and -1970(±290) to -2490(±280) km3, respectively. The sea ice volume export reaches its maximum in spring and about one-third of the yearly total volume export occurs in the melt season. The minimum monthly sea ice export is −11 km3 in August 2015, and the maximum (−442 km3) appears in March 2011. The seasonal relative frequencies of sea ice thickness and drift suggest that the Fram Strait outlet in summer is dominated by sea ice that is thicker than 2 m with relatively slow seasonal mean drift of about 3 km d−1.


2016 ◽  
Vol 33 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Qinghua Yang ◽  
Martin Losch ◽  
Svetlana N. Losa ◽  
Thomas Jung ◽  
Lars Nerger

AbstractThe sensitivity of assimilating sea ice thickness data to uncertainty in atmospheric forcing fields is examined using ensemble-based data assimilation experiments with the Massachusetts Institute of Technology General Circulation Model (MITgcm) in the Arctic Ocean during November 2011–January 2012 and the Met Office (UKMO) ensemble atmospheric forecasts. The assimilation system is based on a local singular evolutive interpolated Kalman (LSEIK) filter. It combines sea ice thickness data derived from the European Space Agency’s (ESA) Soil Moisture Ocean Salinity (SMOS) satellite and Special Sensor Microwave Imager/Sounder (SSMIS) sea ice concentration data with the numerical model. The effect of representing atmospheric uncertainty implicit in the ensemble forcing is assessed by three different assimilation experiments. The first two experiments use a single deterministic forcing dataset and a different forgetting factor to inflate the ensemble spread. The third experiment uses 23 members of the UKMO atmospheric ensemble prediction system. It avoids additional ensemble inflation and is hence easier to implement. As expected, the model-data misfits are substantially reduced in all three experiments, but with the ensemble forcing the errors in the forecasts of sea ice concentration and thickness are smaller compared to the experiments with deterministic forcing. This is most likely because the ensemble forcing results in a more plausible spread of the model state ensemble, which represents model uncertainty and produces a better forecast.


Sign in / Sign up

Export Citation Format

Share Document