decadal climate
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 108)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Weiyi Sun ◽  
Jian Liu ◽  
Bin Wang ◽  
Deliang Chen ◽  
Chaochao Gao

AbstractThe Pacific decadal oscillation (PDO) is the leading mode of decadal climate variability over the North Pacific. However, it remains unknown to what extent external forcings can influence the PDO’s periodicity and magnitude over the past 2000 years. We show that the paleo-assimilation products (LMR) and proxy data suggest a 20–40 year PDO occurred during both the Mediaeval Climate Anomaly (MCA, ~ 750–1150) and Little Ice Age (LIA, ~ 1250–1850) while a salient 50–70 year variance peak emerged during the LIA. These results are reproduced well by the CESM simulations in the all-forcing (AF) and single volcanic forcing (Vol) experiments. We show that the 20–40 year PDO is an intrinsic mode caused by internal variability but the 50–70 year PDO during the LIA is a forced mode primarily shaped by volcanic forcing. The intrinsic mode develops in tandem with tropical ENSO-like anomalies, while the forced mode develops from the western Pacific and unrelated to tropical sea surface temperature anomalies. The volcanism-induced land–sea thermal contrast may trigger anomalous northerlies over the western North Pacific (WNP), leading to reduced northward heat transport and the cooling in the Kuroshio–Oyashio Extension (KOE), generating the forced mode. A 50–70 year Atlantic multidecadal oscillation founded during the LIA under volcanic forcing may also contribute to the forced mode. These findings shed light on the interplay between the internal variability and external forcing and the present and future changes of the PDO.


Water Policy ◽  
2021 ◽  
Vol 23 (S1) ◽  
pp. 232-249
Author(s):  
J. Rolf Olsen ◽  
Vikram M. Mehta ◽  
Harvey Hill

Abstract The high thermal and mechanical inertia of the oceans results in slow changes in sea surface temperatures (SSTs). Changes in SSTs, in turn, can impact atmospheric circulation including water vapor transport, precipitation, and temperatures throughout the world. The Pacific Decadal Oscillation (PDO), the tropical Atlantic SST gradient variability, and the West Pacific Warm Pool are patterns of natural climate variability that tend to persist over decadal time periods. There are current efforts to produce decadal climate predictions, but there is limited understanding if this information can be used in water resources management. Understanding the current state of decadal climate variability (DCV) phenomena and the probability of persisting in that state may be useful information for water managers. This information could improve forecasts that aid operations and short-term planning for reservoir management, domestic and industrial water supplies, flood risk management, energy production, recreation, inland navigation, and irrigation. If conditions indicate a higher likelihood of drought, reservoir managers could reduce flood storage space and increase storage for conservation purposes. Improved forecasts for irrigation could result in greater efficiencies by shifting crops and rotational crop patterns. The potential benefits of using a forecast must be balanced against the risk of damages if the forecast is wrong. Seasonal forecasts using DCV information could also be used to inform drought triggers. If DCV indices indicate that the climate has a higher probability of dry conditions, drought contingency plans could be triggered earlier. Understanding of DCV phenomena could also improve long-range water resources planning. DCV can manifest itself in relatively short-term hydrologic records as linear trends that complicate hydrologic frequency analysis, which has traditionally assumed that hydrologic records are stationary.


2021 ◽  
pp. 1-54

Abstract The decadal Pacific–Japan (PJ) pattern, the dominant decadal mode of summer vorticity anomaly over East Asia, is characterized as a meridionally arranged wave pattern with one anomalous cyclone located over Taiwan, and two anomalous anticyclones around the South China Sea (SCS) and the Bohai Sea. This pattern can cause wetter and colder conditions in Southeast China and dryer and warmer conditions in North China. Local SST–rainfall relationship reveals that the Maritime Continent (MC) SST can act as an engine to regulate and maintain the decadal PJ pattern. Driven by enhanced convection over the MC, anomalous divergent flows in the upper troposphere move northward, cross the equator and then converge and subside over the SCS. The SCS low-level divergence, maintained by this meridional overturning circulation under the Sverdrup vorticity balance, further works as a Rossby wave source and excites the decadal PJ pattern pointing straight northward. The transhemispheric impacts of the MC SST are well reproduced by both the atmospheric general circulation model and the dry linear baroclinic model, with the former emphasizing the MC’s original forcing role and the latter highlighting the SCS anticyclone’s role in relaying and amplifying those climatic impacts. Thus, our results indicate that SST variations over the MC region can be viewed as a potential source of East Asian decadal climate predictability.


2021 ◽  
Vol 14 (11) ◽  
pp. 7073-7116
Author(s):  
Ingo Bethke ◽  
Yiguo Wang ◽  
François Counillon ◽  
Noel Keenlyside ◽  
Madlen Kimmritz ◽  
...  

Abstract. The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of sea surface temperature (SST) and T/S-profile observations using the ensemble Kalman filter (EnKF). We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug fixes, retuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialization and climatological reference period: the first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations. We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings are comparable to, or slightly larger than those of, the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too-cold subtropical oceans and northern continents, and a too-warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronizes variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and also for temperature over land if the forced signal is removed. Both products show limited success in constraining and predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain, and potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead-dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products. The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronization of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate internal and forced signals, to include land and atmosphere initialization and new observational types – and improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful multiyear climate prediction that benefits society.


2021 ◽  
Vol 17 (6) ◽  
pp. 2361-2379
Author(s):  
Duncan Pappert ◽  
Yuri Brugnara ◽  
Sylvie Jourdain ◽  
Aleksandra Pospieszyńska ◽  
Rajmund Przybylak ◽  
...  

Abstract. In recent years, instrumental observations have become increasingly important in climate research, allowing past daily-to-decadal climate variability and weather extremes to be explored in greater detail. The 18th century saw the formation of several short-lived meteorological networks of which the one organised by the Societas Meteorologica Palatina is arguably the most well known. This network stood out as one of the few that efficiently managed to control its members, integrating, refining, and publishing measurements taken from numerous stations around Europe and beyond. Although much has been written about the network in both history, science, and individual prominent series used for climatological studies, the actual measurements have not yet been digitised and published in extenso. This paper represents an important step towards filling this perceived gap in research. Here, we provide an inventory listing the availability of observed variables for the 37 stations that belonged to the society's network and discuss their historical context. Most of these observations have been digitised, and a considerable fraction has been converted and formatted. In this paper, we focus on the temperature and pressure measurements, which have been corrected and homogenised. We then demonstrate their potential for climate research by analysing two cases of extreme weather. The recovered series will have wide applications and could contribute to a better understanding of the mechanisms behind climatic variations and extremes as well as the societal reactions to adverse weather. Even the shorter series could be ingested into reanalyses and improve the quality of large-scale reconstructions.


2021 ◽  
Author(s):  
◽  
Bradley Ross Markle

<p>This thesis investigates synoptic variability in the Ross Sea region, Antarctica and develops geochemical proxies of this variability from an ice core record in Southern Victoria Land. Particular focus is given to the influence of decadal climate oscillations on synoptic conditions and potential records of these oscillations in ice core proxy records as long-­‐term records of these oscillations are important for understanding future climate change. I present an investigation of the joint influence of the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on variability in the Amundsen Sea Low (ASL), a dominant climatological feature that strongly influences the weather in the Ross Sea region. It is shown that the positive phase of each oscillation is associated with significant strengthening of the ASL, while negative phases are associated with a weakening. Through regression analysis I show that a simple linear combination of indices representing these oscillations can explain more than 40% of the geopotential height variance in the AS region at a seasonal scale and over 70% of the variance at an annual scale. These results are consistent with the known mechanisms of ENSO and SAM interaction in the region and show that while SAM is dominant hemispherically, ENSO is only influential in the Pacific Sector. Finally it is demonstrated that a simple model of linear reinforcement and interference between the oscillations describes their influence on the variability in the ASL better than models incorporating more complex interactions. Atmospheric back-­‐trajectory modeling and cluster analysis are used to investigate synoptic variability at the Gawn Ice Piedmont (GIP) ice core site in the Ross Sea Region, Antarctica. I identify two dominant air-­‐mass trajectory clusters: oceanic – cyclonic and continental trajectories. My analysis shows that oceanic – cyclonic trajectories peak during April (southern hemisphere winter), while continental trajectories reach their maximum during December (summer). A causal association is demonstrated between ENSO and the frequency of oceanic – cyclonic trajectories originating from the Ross Sea region. In contrast, it is shown that the Southern Annular Mode has little influence on the frequency of cyclonic clusters. I then develop proxy records for the synoptic variability using a shallow firn core from the GIP site containing 8 years of geochemical record. Continental trajectories correlate with concentrations of nitrate (NO3), which is sourced from stratospheric air-­‐masses descending over the Antarctic interior. Oceanic – cyclonic trajectory clusters strongly correlate with deuterium excess at seasonal and inter-­‐annual scales, a proxy sensitive to changes in relative humidity and sea surface temperature (SST) in the in the Ross and Amundsen Seas. Decadal variability in the frequency of oceanic – cyclonic trajectories is discussed with respect to ENSO, SAM, and changes in SST and sea ice extent.</p>


2021 ◽  
Vol 14 (11) ◽  
pp. 6863-6891
Author(s):  
Reinel Sospedra-Alfonso ◽  
William J. Merryfield ◽  
George J. Boer ◽  
Viatsheslav V. Kharin ◽  
Woo-Sung Lee ◽  
...  

Abstract. The Canadian Earth System Model version 5 (CanESM5) developed at Environment and Climate Change Canada's Canadian Centre for Climate Modelling and Analysis (CCCma) is participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). A 40-member ensemble of CanESM5 retrospective decadal forecasts (or hindcasts) is integrated for 10 years from realistic initial states once a year during 1961 to the present using prescribed external forcing. The results are part of CCCma's contribution to the Decadal Climate Prediction Project (DCPP) component of CMIP6. This paper evaluates CanESM5 large ensemble decadal hindcasts against observational benchmarks and against historical climate simulations initialized from pre-industrial control run states. The focus is on the evaluation of the potential predictability and actual skill of annual and multi-year averages of key oceanic and atmospheric fields at regional and global scales. The impact of initialization on prediction skill is quantified from the hindcasts decomposition into uninitialized and initialized components. The dependence of potential and actual skill on ensemble size is examined. CanESM5 decadal hindcasts skillfully predict upper-ocean states and surface climate with a significant impact from initialization that depend on climate variable, forecast range, and geographic location. Deficiencies in the skill of North Atlantic surface climate are identified and potential causes discussed. The inclusion of biogeochemical modules in CanESM5 enables the prediction of carbon cycle variables which are shown to be potentially skillful on decadal timescales, with a strong long-lasting impact from initialization on skill in the ocean and a moderate short-lived impact on land.


2021 ◽  
Author(s):  
◽  
Bradley Ross Markle

<p>This thesis investigates synoptic variability in the Ross Sea region, Antarctica and develops geochemical proxies of this variability from an ice core record in Southern Victoria Land. Particular focus is given to the influence of decadal climate oscillations on synoptic conditions and potential records of these oscillations in ice core proxy records as long-­‐term records of these oscillations are important for understanding future climate change. I present an investigation of the joint influence of the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) on variability in the Amundsen Sea Low (ASL), a dominant climatological feature that strongly influences the weather in the Ross Sea region. It is shown that the positive phase of each oscillation is associated with significant strengthening of the ASL, while negative phases are associated with a weakening. Through regression analysis I show that a simple linear combination of indices representing these oscillations can explain more than 40% of the geopotential height variance in the AS region at a seasonal scale and over 70% of the variance at an annual scale. These results are consistent with the known mechanisms of ENSO and SAM interaction in the region and show that while SAM is dominant hemispherically, ENSO is only influential in the Pacific Sector. Finally it is demonstrated that a simple model of linear reinforcement and interference between the oscillations describes their influence on the variability in the ASL better than models incorporating more complex interactions. Atmospheric back-­‐trajectory modeling and cluster analysis are used to investigate synoptic variability at the Gawn Ice Piedmont (GIP) ice core site in the Ross Sea Region, Antarctica. I identify two dominant air-­‐mass trajectory clusters: oceanic – cyclonic and continental trajectories. My analysis shows that oceanic – cyclonic trajectories peak during April (southern hemisphere winter), while continental trajectories reach their maximum during December (summer). A causal association is demonstrated between ENSO and the frequency of oceanic – cyclonic trajectories originating from the Ross Sea region. In contrast, it is shown that the Southern Annular Mode has little influence on the frequency of cyclonic clusters. I then develop proxy records for the synoptic variability using a shallow firn core from the GIP site containing 8 years of geochemical record. Continental trajectories correlate with concentrations of nitrate (NO3), which is sourced from stratospheric air-­‐masses descending over the Antarctic interior. Oceanic – cyclonic trajectory clusters strongly correlate with deuterium excess at seasonal and inter-­‐annual scales, a proxy sensitive to changes in relative humidity and sea surface temperature (SST) in the in the Ross and Amundsen Seas. Decadal variability in the frequency of oceanic – cyclonic trajectories is discussed with respect to ENSO, SAM, and changes in SST and sea ice extent.</p>


Science ◽  
2021 ◽  
Vol 374 (6563) ◽  
Author(s):  
Scott Power ◽  
Matthieu Lengaigne ◽  
Antonietta Capotondi ◽  
Myriam Khodri ◽  
Jérôme Vialard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document