scholarly journals The Impact of Satellite Winds and Latent Heat Fluxes in a Numerical Simulation of the Tropical Pacific Ocean

2006 ◽  
Vol 19 (22) ◽  
pp. 5889-5902 ◽  
Author(s):  
Ludos-Herve Ayina ◽  
Abderrahim Bentamy ◽  
Alberto M. Mestas-Nuñez ◽  
Gurvan Madec

Abstract Several oceanic operational programs use remotely sensed fluxes to complement atmospheric operational analyses from major national weather prediction centers. The main goal of this study is to evaluate the ability of the ocean model (ORCA) to correctly simulate the dynamic of the tropical Pacific Ocean in 1996–98 when forced by the satellite turbulent fluxes (wind stress and latent heat fluxes). The results are compared with the oceanic response resulting from forcing the model with the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Three sensitivity simulations forced with satellite and atmospheric analysis fields are performed. The control experiment is forced with the ECMWF fluxes. The solutions of these simulations are compared with data from the Tropical Atmosphere–Ocean (TAO) buoys and from sea surface temperatures analysis by Reynolds and Smith in the equatorial Pacific Ocean. The analysis results indicate that the model reproduces well the major spatial and temporal oceanic structures including the main characteristics of the 1997–98 El Niño. More specifically, the comparisons with buoys indicate that the experiment forced by the winds and the satellite latent heat fluxes is closer to the observations. They provide weak rms difference and strong correlations along the whole 500-m depth column. Furthermore, the correlations with the SST analysis vary between 75% and 95% compared to 65% and 77% for the experiment forced by ECMWF fluxes. The currents in the first 350 m also show a strong sensitivity to satellite turbulent fluxes.

2011 ◽  
Vol 24 (14) ◽  
pp. 3593-3608 ◽  
Author(s):  
Dongliang Yuan ◽  
Jing Wang ◽  
Tengfei Xu ◽  
Peng Xu ◽  
Zhou Hui ◽  
...  

Abstract Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.


2010 ◽  
Vol 3 (6) ◽  
pp. 391-397 ◽  
Author(s):  
Mat Collins ◽  
Soon-Il An ◽  
Wenju Cai ◽  
Alexandre Ganachaud ◽  
Eric Guilyardi ◽  
...  

2012 ◽  
Vol 87 ◽  
pp. 194-209 ◽  
Author(s):  
Stella C. Woodard ◽  
Deborah J. Thomas ◽  
Franco Marcantonio

1998 ◽  
Vol 103 (C13) ◽  
pp. 30855-30871 ◽  
Author(s):  
Sonia Bauer ◽  
Mark S. Swenson ◽  
Annalisa Griffa ◽  
Arthur J. Mariano ◽  
Ken Owens

2012 ◽  
Vol 68 (5) ◽  
pp. 687-701 ◽  
Author(s):  
Jian Chen ◽  
Ren Zhang ◽  
Huizan Wang ◽  
Yuzhu An ◽  
Peng Peng ◽  
...  

Science ◽  
2014 ◽  
Vol 343 (6174) ◽  
pp. 976-978 ◽  
Author(s):  
A. Clement ◽  
P. DiNezio

Sign in / Sign up

Export Citation Format

Share Document