A Hybrid Multivariate Deep Learning Networks for Multistep ahead Sea Level Anomaly Forecasting

Abstract The accumulated remote sensing data of altimeters and scatterometers have provided new opportunities for ocean state forecasting and have improved our knowledge of ocean-atmosphere exchanges. Studies on multivariate, multistep, spatiotemporal sequence forecasts of sea level anomalies (SLA) for different modalities, however, remain problematic. In this paper, we present a novel hybrid and multivariate deep neural network, named HMnet3, which can be used for SLA forecasting in the South China Sea (SCS). First, a spatiotemporal sequence forecasting network is trained by an improved convolutional long short-term memory (ConvLSTM) network using a channelwise attention mechanism and multivariate data from 1993 to 2015. Then, a time series forecasting network is trained by an improved long short-term memory (LSTM) network, which is realized by ensemble empirical mode decomposition (EEMD). Finally, the two networks are combined by a successive correction method to produce SLA forecasts for lead times of up to 15 days, with a special focus on the open sea and coastal regions of the SCS. During the testing period of 2016-2018, the performance of HMnet3 with sea surface temperature anomaly (SSTA), wind speed anomaly (SPDA) and SLA data is much better than those of state-of-the-art dynamic and statistical (ConvLSTM, persistence and climatology) forecast models. Stricter testbeds for trial simulation experiments with real-time datasets are investigated, where the eddy classification metrics of HMnet3 are favorable for all properties, especially for those of small-scale eddies.

2020 ◽  
Vol 9 (4) ◽  
pp. 194
Author(s):  
Wenqi Cui ◽  
Xin He ◽  
Meng Yao ◽  
Ziwei Wang ◽  
Jie Li ◽  
...  

When a landslide happens, it is important to recognize the hazard-affected bodies surrounding the landslide for the risk assessment and emergency rescue. In order to realize the recognition, the spatial relationship between landslides and other geographic objects such as residence, roads and schools needs to be defined. Comparing with semantic segmentation and instance segmentation that can only recognize the geographic objects separately, image captioning can provide richer semantic information including the spatial relationship among these objects. However, the traditional image captioning methods based on RNNs have two main shortcomings: the errors in the prediction process are often accumulated and the location of attention is not always accurate which would lead to misjudgment of risk. To handle these problems, a landslide image interpretation network based on a semantic gate and a bi-temporal long-short term memory network (SG-BiTLSTM) is proposed in this paper. In the SG-BiTLSTM architecture, a U-Net is employed as an encoder to extract features of the images and generate the mask maps of the landslides and other geographic objects. The decoder of this structure consists of two interactive long-short term memory networks (LSTMs) to describe the spatial relationship among these geographic objects so that to further determine the role of the classified geographic objects for identifying the hazard-affected bodies. The purpose of this research is to judge the hazard-affected bodies of the landslide (i.e., buildings and roads) through the SG-BiTLSTM network to provide geographic information support for emergency service. The remote sensing data was taken by Worldview satellite after the Wenchuan earthquake happened in 2008. The experimental results demonstrate that SG-BiTLSTM network shows remarkable improvements on the recognition of landslide and hazard-affected bodies, compared with the traditional LSTM (the Baseline Model), the BLEU1 of the SG-BiTLSTM is improved by 5.89%, the matching rate between the mask maps and the focus matrix of the attention is improved by 42.81%. In conclusion, the SG-BiTLSTM network can recognize landslides and the hazard-affected bodies simultaneously to provide basic geographic information service for emergency decision-making.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3433 ◽  
Author(s):  
Seon Kim ◽  
Gyul Lee ◽  
Gu-Young Kwon ◽  
Do-In Kim ◽  
Yong-June Shin

Load forecasting is a key issue for efficient real-time energy management in smart grids. To control the load using demand side management accurately, load forecasting should be predicted in the short term. With the advent of advanced measuring infrastructure, it is possible to measure energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale energy groups, such as individual buildings. This paper presents applications of deep learning using feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed into a weekly load profile and then decomposed into intrinsic mode functions by variational mode decomposition to capture periodic features. Then, a long short-term memory network model is trained by three-dimensional input data with three-step regularization. Finally, the prediction results of all intrinsic mode functions are combined with advanced measuring infrastructure measured in the previous steps to determine an aggregated output for load forecasting. The results are validated by applications to real-world data from smart buildings, and the performance of the proposed approach is assessed by comparing the predicted results with those of conventional methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory network-based feature decomposition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ruifang Yuan ◽  
Siyu Cai ◽  
Weihong Liao ◽  
Xiaohui Lei ◽  
Yunhui Zhang ◽  
...  

Hydrological series data are non-stationary and nonlinear. However, certain data-driven forecasting methods assume that streamflow series are stable, which contradicts reality and causes the simulated value to deviate from the observed one. Ensemble empirical mode decomposition (EEMD) was employed in this study to decompose runoff series into several stationary components and a trend. The long short-term memory (LSTM) model was used to build the prediction model for each sub-series. The model input set contained the historical flow series of the simulation station, its upstream hydrological station, and the historical meteorological element series. The final input of the LSTM model was selected by the MI method. To verify the effect of EEMD, this study used the Radial Basis Function (RBF) model to predict the sub-series, which was decomposed by EEMD. In addition, to study the simulation characteristics of the EEMD-LSTM model for different months of runoff, the GM(group by month)-EEMD-LSTM was set up for comparison. The key difference between the GM-EEMD-LSTM model and the EEMD-LSTM model is that the GM model must divide the runoff sequence on a monthly basis, followed by decomposition with EEMD and prediction with the LSTM model. The prediction results of the sub-series obtained by the LSTM and RBF exhibited better statistical performance than those of the original series, especially for the EEMD-LSTM. The overall GM-EEMD-LSTM model performance in low-water months was superior to that of the EEMD-LSTM model, but the simulation effect in the flood season was slightly lower than that of the EEMD-LSTM model. The simulation results of both models are significantly improved compared to those of the LSTM model.


2019 ◽  
Vol 6 (11) ◽  
pp. 2214-2226 ◽  
Author(s):  
Yuliang Dai ◽  
Zhenyu Lu ◽  
Hengde Zhang ◽  
Tianming Zhan ◽  
Jia Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document