scholarly journals Improving Weather Forecast Skill through Reduced-Precision Data Assimilation

2017 ◽  
Vol 146 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Sam Hatfield ◽  
Aneesh Subramanian ◽  
Tim Palmer ◽  
Peter Düben

Abstract A new approach for improving the accuracy of data assimilation, by trading numerical precision for ensemble size, is introduced. Data assimilation is inherently uncertain because of the use of noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower-precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, computational resources can be redistributed toward, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localization, lowering precision could actually permit an improvement in the accuracy of weather forecasts. Here, this idea is tested on an ensemble data assimilation system comprising the Lorenz ’96 toy atmospheric model and the ensemble square root filter. The system is run at double-, single-, and half-precision (the latter using an emulation tool), and the performance of each precision is measured through mean error statistics and rank histograms. The sensitivity of these results to the observation error and the length of the observation window are addressed. Then, by reinvesting the saved computational resources from reducing precision into the ensemble size, assimilation error can be reduced for (hypothetically) no extra cost. This results in increased forecasting skill, with respect to double-precision assimilation.

2011 ◽  
Vol 12 (1) ◽  
pp. 118-134 ◽  
Author(s):  
Dusanka Zupanski ◽  
Sara Q. Zhang ◽  
Milija Zupanski ◽  
Arthur Y. Hou ◽  
Samson H. Cheung

Abstract In the near future, the Global Precipitation Measurement (GPM) mission will provide precipitation observations with unprecedented accuracy and spatial/temporal coverage of the globe. For hydrological applications, the satellite observations need to be downscaled to the required finer-resolution precipitation fields. This paper explores a dynamic downscaling method using ensemble data assimilation techniques and cloud-resolving models. A prototype ensemble data assimilation system using the Weather Research and Forecasting Model (WRF) has been developed. A high-resolution regional WRF with multiple nesting grids is used to provide the first-guess and ensemble forecasts. An ensemble assimilation algorithm based on the maximum likelihood ensemble filter (MLEF) is used to perform the analysis. The forward observation operators from NOAA–NCEP’s gridpoint statistical interpolation (GSI) are incorporated for using NOAA–NCEP operational datastream, including conventional data and clear-sky satellite observations. Precipitation observation operators are developed with a combination of the cloud-resolving physics from NASA Goddard cumulus ensemble (GCE) model and the radiance transfer schemes from NASA Satellite Data Simulation Unit (SDSU). The prototype of the system is used as a test bed to optimally combine observations and model information to produce a dynamically downscaled precipitation analysis. A case study on Tropical Storm Erin (2007) is presented to investigate the ability of the prototype of the WRF Ensemble Data Assimilation System (WRF-EDAS) to ingest information from in situ and satellite observations including precipitation-affected radiance. The results show that the analyses and forecasts produced by the WRF-EDAS system are comparable to or better than those obtained with the WRF-GSI analysis scheme using the same set of observations. An experiment was also performed to examine how the analyses and short-term forecasts of microphysical variables and dynamical fields are influenced by the assimilation of precipitation-affected radiances. The results highlight critical issues to be addressed in the next stage of development such as model-predicted hydrometeor control variables and associated background error covariance, bias estimation, and correction in radiance space, as well as the observation error statistics. While further work is needed to optimize the performance of WRF-EDAS, this study establishes the viability of developing a cloud-scale ensemble data assimilation system that has the potential to provide a useful vehicle for downscaling satellite precipitation information to finer scales suitable for hydrological applications.


Author(s):  
M. Zupanski ◽  
S. J. Fletcher ◽  
I. M. Navon ◽  
B. Uzunoglu ◽  
R. P. Heikes ◽  
...  

2021 ◽  
Vol 25 (3) ◽  
pp. 931-944
Author(s):  
Johann M. Lacerda ◽  
Alexandre A. Emerick ◽  
Adolfo P. Pires

2005 ◽  
Vol 133 (6) ◽  
pp. 1710-1726 ◽  
Author(s):  
Milija Zupanski

Abstract A new ensemble-based data assimilation method, named the maximum likelihood ensemble filter (MLEF), is presented. The analysis solution maximizes the likelihood of the posterior probability distribution, obtained by minimization of a cost function that depends on a general nonlinear observation operator. The MLEF belongs to the class of deterministic ensemble filters, since no perturbed observations are employed. As in variational and ensemble data assimilation methods, the cost function is derived using a Gaussian probability density function framework. Like other ensemble data assimilation algorithms, the MLEF produces an estimate of the analysis uncertainty (e.g., analysis error covariance). In addition to the common use of ensembles in calculation of the forecast error covariance, the ensembles in MLEF are exploited to efficiently calculate the Hessian preconditioning and the gradient of the cost function. A sufficient number of iterative minimization steps is 2–3, because of superior Hessian preconditioning. The MLEF method is well suited for use with highly nonlinear observation operators, for a small additional computational cost of minimization. The consistent treatment of nonlinear observation operators through optimization is an advantage of the MLEF over other ensemble data assimilation algorithms. The cost of MLEF is comparable to the cost of existing ensemble Kalman filter algorithms. The method is directly applicable to most complex forecast models and observation operators. In this paper, the MLEF method is applied to data assimilation with the one-dimensional Korteweg–de Vries–Burgers equation. The tested observation operator is quadratic, in order to make the assimilation problem more challenging. The results illustrate the stability of the MLEF performance, as well as the benefit of the cost function minimization. The improvement is noted in terms of the rms error, as well as the analysis error covariance. The statistics of innovation vectors (observation minus forecast) also indicate a stable performance of the MLEF algorithm. Additional experiments suggest the amplified benefit of targeted observations in ensemble data assimilation.


2014 ◽  
Vol 142 (2) ◽  
pp. 716-738 ◽  
Author(s):  
Craig S. Schwartz ◽  
Zhiquan Liu

Abstract Analyses with 20-km horizontal grid spacing were produced from parallel continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and “hybrid” variational–ensemble data assimilation (DA) systems between 0000 UTC 6 May and 0000 UTC 21 June 2011 over a domain spanning the contiguous United States. Beginning 9 May, the 0000 UTC analyses initialized 36-h Weather Research and Forecasting Model (WRF) forecasts containing a large convection-permitting 4-km nest. These 4-km 3DVAR-, EnSRF-, and hybrid-initialized forecasts were compared to benchmark WRF forecasts initialized by interpolating 0000 UTC Global Forecast System (GFS) analyses onto the computational domain. While important differences regarding mean state characteristics of the 20-km DA systems were noted, verification efforts focused on the 4-km precipitation forecasts. The 3DVAR-, hybrid-, and EnSRF-initialized 4-km precipitation forecasts performed similarly regarding general precipitation characteristics, such as timing of the diurnal cycle, and all three forecast sets had high precipitation biases at heavier rainfall rates. However, meaningful differences emerged regarding precipitation placement as quantified by the fractions skill score. For most forecast hours, the hybrid-initialized 4-km precipitation forecasts were better than the EnSRF-, 3DVAR-, and GFS-initialized forecasts, and the improvement was often statistically significant at the 95th percentile. These results demonstrate the potential of limited-area continuously cycling hybrid DA configurations and suggest additional hybrid development is warranted.


2005 ◽  
Vol 133 (12) ◽  
pp. 3431-3449 ◽  
Author(s):  
D. M. Barker

Abstract Ensemble data assimilation systems incorporate observations into numerical models via solution of the Kalman filter update equations, and estimates of forecast error covariances derived from ensembles of model integrations. In this paper, a particular algorithm, the ensemble square root filter (EnSRF), is tested in a limited-area, polar numerical weather prediction (NWP) model: the Antarctic Mesoscale Prediction System (AMPS). For application in the real-time AMPS, the number of model integrations that can be run to provide forecast error covariances is limited, resulting in an ensemble sampling error that degrades the analysis fit to observations. In this work, multivariate, climatologically plausible forecast error covariances are specified via averaged forecast difference statistics. Ensemble representations of the “true” forecast errors, created using randomized control variables of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) three-dimensional variational (3DVAR) data assimilation system, are then used to assess the dependence of sampling error on ensemble size, data density, and localization of covariances using simulated observation networks. Results highlight the detrimental impact of ensemble sampling error on the analysis increment structure of correlated, but unobserved fields—an issue not addressed by the spatial covariance localization techniques used to date. A 12-hourly cycling EnSRF/AMPS assimilation/forecast system is tested for a two-week period in December 2002 using real, conventional (surface, rawinsonde, satellite retrieval) observations. The dependence of forecast scores on methods used to maintain ensemble spread and the inclusion of perturbations to lateral boundary conditions are studied.


2011 ◽  
Vol 46 (1) ◽  
pp. 493-497 ◽  
Author(s):  
S. Vetra-Carvalho ◽  
S. Migliorini ◽  
N.K. Nichols

Sign in / Sign up

Export Citation Format

Share Document