nonlinear observation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Lucas Brivadis ◽  
Jean-Paul Gauthier ◽  
Ludovic Sacchelli ◽  
Ulysse Serres

We address the problem of dynamic output feedback stabilization at an unobservable target point. The challenge lies in according the antagonistic nature of the objective and the properties of the system: the system tends to be less observable as it approaches the target. We illustrate two main ideas: well chosen perturbations of a state feedback law can yield new observability properties of the closed-loop system, and embedding systems into bilinear systems admitting observers with dissipative error systems allows to mitigate the observability issues. We apply them on a case of systems with linear dynamics and nonlinear observation map and make use of an ad hoc finite-dimensional embedding. More generally, we introduce a new strategy based on infinite-dimensional unitary embeddings. To do so, we extend the usual definition of dynamic output feedback stabilization in order to allow infinite-dimensional observers fed by the output. We show how this technique, based on representation theory, may be applied to achieve output feedback stabilization at an unobservable target.


2021 ◽  
Author(s):  
Saori Nakashita ◽  
Takeshi Enomoto

<p>Satellite observations have been a growing source for data assimilation in the operational numerical weather prediction. Remotely sensed observations require a nonlinear observation operator.  Most ensemble-based data assimilation methods are formulated for tangent linear observation operators, which are often substituted by nonlinear observation operators. By contrast, the Maximum Likelihood Ensemble Filter (MLEF), which has features of both variational and ensemble approaches, is formulated for linear and nonlinear operators in an identical form and can use non-differentiable observation operators.<span> </span></p><p>In this study, we investigate the performance of MLEF and Ensemble Transform Kalman Filter (ETKF) with the tangent linear and nonlinear observation operators in assimilation experiments of nonlinear observations with a one-dimensional Burgers model.</p><p>The ETKF analysis with the nonlinear operator diverges when the observation error is small due to unrealistically large increments associated with the high order observation terms. The filter divergence can be avoided by localization of the extent of observation influence, but the analysis error is still larger than that of MLEF. In contrast, MLEF is found to be more stable and accurate without localization owing to the minimization of the cost function. Notably, MLEF can make an accurate analysis solution even without covariance inflation, eliminating the labor of parameter adjustment. In addition, the smaller observation error is, or the stronger observation nonlinearity is, MLEF with the nonlinear operators can assimilate observations more effectively than MLEF with the tangent linear operators. This result indicates that MLEF can incorporate nonlinear effects and evaluate the observation term in the cost function appropriately. These encouraging results imply that MLEF is suitable for assimilation of satellite observations with high nonlinearity.</p>


2020 ◽  
Vol 19 (03) ◽  
pp. 2050022
Author(s):  
Dhruvi S. Bhatt ◽  
Shaival H. Nagarsheth ◽  
Shambhu N. Sharma

Stochastic Differential Equations (SDEs) describe physical systems to account for random forcing terms in the evolution of the state trajectory. The noisy sampling mixer, a component of digital wireless communications, can be regarded as a potential case from the dynamical systems’ viewpoint. The universality of the noisy sampling mixer is attributed to the fact that it adopts the structure of a nonlinear SDE and its linearized version becomes a time-varying bilinear SDE. This paper develops a mathematical theory for the nonlinear noisy sampling mixer from the filtering viewpoint. Since the filtering of stochastic systems hinges on the structure of dynamical systems and observation equation set up, we consider three ‘filtering models’. The first model, accounts for a nonlinear SDE coupled with a nonlinear observation equation. In the second model, we consider a bilinear SDE with a linear observation equation to achieve the nonlinear sampling filtering. Note that the bilinear SDE coupled with the linear observation is a consequence of the Carleman linearization to the nonlinear SDE and the nonlinear observation equation. In the third model, we consider a Stratonovich SDE coupled with a nonlinear observation equation. The filtering equation of this paper can be further utilized to guide the design process of the noisy sampling mixer.


Author(s):  
Peng Zheng ◽  
Ryan Barber ◽  
Reed Sorensen ◽  
Christopher Murray ◽  
Aleksandr Aravkin

AbstractMixed effects (ME) models inform a vast array of problems in the physical and social sciences, and are pervasive in meta-analysis. We consider ME models where the random effects component is linear. We then develop an efficient approach for a broad problem class that allows nonlinear measurements, priors, and constraints, and finds robust estimates in all of these cases using trimming in the associated marginal likelihood.The software accompanying this paper is disseminated as an open-source Python package called LimeTr. LimeTr is able to recover results more accurately in the presence of outliers compared to available packages for both standard longitudinal analysis and meta-analysis, and is also more computationally efficient than competing robust alternatives. Supplementary materials that reproduce the simulations, as well as run LimeTr and third party code are available online. We also present analyses of global health data, where we use advanced functionality of LimeTr, including constraints to impose monotonicity and concavity for dose-response relationships. Nonlinear observation models allow new analyses in place of classic approximations, such as log-linear models. Robust extensions in all analyses ensure that spurious data points do not drive our understanding of either mean relationships or between-study heterogeneity.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5520 ◽  
Author(s):  
Alexander Miller ◽  
Boris Miller ◽  
Gregory Miller

This article discusses various approaches to the control of autonomous underwater vehicles (AUVs) with the aid of different velocity-position estimation algorithms. Traditionally this field is considered as the area of the extended Kalman filter (EKF) application: It became a universal tool for nonlinear observation models and its use is ubiquitous. Meanwhile, the specific characteristics of underwater navigation, such as an incomplete sets of measurements, constraints on the range metering or even impossibility of range measurements, observations provided by rather specific acoustic beacons, sonar observations, and other features seriously narrow the applicability of common instruments due to a high level of uncertainty and nonlinearity. The AUV navigation system, not being able to rely on a single source of position estimation, has to take into account all available information. This leads to the necessity of various complex estimation and data fusion algorithms, which are the matter of the present article. Here we discuss some approaches to the AUV position estimation such as conditionally minimax nonlinear filtering (CMNF) and unbiased pseudo-measurement filters (UPMFs) in conjunction with velocity estimation based on the seabed profile acoustic sensing. The presented estimation algorithms serve as a basis for a locally optimal AUV motion control algorithm, which is also presented.


2019 ◽  
Vol 147 (12) ◽  
pp. 4553-4565 ◽  
Author(s):  
Yue Ying

Abstract High-resolution models nowadays simulate phenomena across many scales and pose challenges to the design of efficient data assimilation methods that reduce errors at all scales. Smaller-scale features experience rapid nonlinear error growth that gives rise to displacement errors, which cause suboptimal ensemble filter performance. Previous studies have started exploring methods that can reduce displacement errors. In this study, a multiscale alignment (MSA) method is proposed for ensemble filtering. The MSA method iteratively processes the model state from the largest to the smallest scales. At each scale, an ensemble filter is applied to update the state with observations, and the analysis increments are utilized to derive displacement vectors for each member that align the ensemble at smaller scales before the next iteration. The nonlinearity in smaller-scale priors is reduced by removing larger-scale displacement errors. Because the displacement vectors are derived from analysis increments in the state space rather than the nonlinear observation-space cost function formulated in previous studies, this method provides a less costly and more robust way to solve for the displacement vectors. Observing system simulation experiments using a two-layer quasigeostrophic model were conducted to provide a proof of concept of the MSA method. Results show that the MSA method significantly improves the accuracy of posteriors compared to the existing ensemble filter methods with or without multiscale localization. Advantage of the MSA method are more evident when the ensemble size is relatively small and the cycling period is comparable to the average eddy turnover time of the dynamical system.


Sign in / Sign up

Export Citation Format

Share Document