scholarly journals Impacts of Model Resolutions and Initial Conditions on Predictions of the Asian Summer Monsoon by the NCEP Climate Forecast System

2012 ◽  
Vol 27 (3) ◽  
pp. 629-646 ◽  
Author(s):  
Min Wen ◽  
Song Yang ◽  
Augustin Vintzileos ◽  
Wayne Higgins ◽  
Renhe Zhang

Abstract A series of 60-day hindcasts by the Climate Forecast System (CFS) of the National Centers for Environmental Prediction is analyzed to understand the impacts of atmospheric model resolutions and initial conditions on predictions of the Asian summer monsoon. The experiments, for the time period 2002–06 and with 14 ensemble members, are conducted at resolutions of T62, T126, and T254. They are initialized every 5 days from May to August, using the operational global atmospheric data assimilation system and operational global ocean data assimilation. It is found that, in predicting the magnitude and the timing of monsoon rainfall over lands, high model resolutions overall perform better than lower model resolutions. The increase in prediction skills with model resolution is more apparent over South Asia than over Southeast Asia. The largest improvement is seen over the Tibetan Plateau, at least for precipitation. However, the increase in model resolution does not enhance the skill of the predictions over oceans. Overall, model resolution has larger impacts than do the initial conditions on predicting the development of the Asian summer monsoon in the early season. However, higher model resolutions such as T382 may be needed for the CFS to simulate and predict many features of the monsoon more realistically.

2015 ◽  
Vol 143 (11) ◽  
pp. 4660-4677 ◽  
Author(s):  
Stephen G. Penny ◽  
David W. Behringer ◽  
James A. Carton ◽  
Eugenia Kalnay

Abstract Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR). The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.


2008 ◽  
Vol 21 (15) ◽  
pp. 3755-3775 ◽  
Author(s):  
Song Yang ◽  
Zuqiang Zhang ◽  
Vernon E. Kousky ◽  
R. Wayne Higgins ◽  
Soo-Hyun Yoo ◽  
...  

Abstract Analysis of the retrospective ensemble predictions (hindcasts) of the NCEP Climate Forecast System (CFS) indicates that the model successfully simulates many major features of the Asian summer monsoon including the climatology and interannual variability of major precipitation centers and atmospheric circulation systems. The model captures the onset of the monsoon better than the retreat of the monsoon, and it simulates the seasonal march of monsoon rainfall over Southeast Asia more realistically than that over South Asia. The CFS predicts the major dynamical monsoon indices and monsoon precipitation patterns several months in advance. It also depicts the interactive oceanic–atmospheric processes associated with the precipitation anomalies reasonably well at different time leads. Overall, the skill of monsoon prediction by the CFS mainly comes from the impact of El Niño–Southern Oscillation (ENSO). The CFS produces weaker-than-observed large-scale monsoon circulation, due partially to the cold bias over the Asian continent. It tends to overemphasize the relationship between ENSO and the Asian monsoon, as well as the impact of ENSO on the Asian and Indo-Pacific climate. A higher-resolution version of the CFS (T126) captures the climatology and variability of the Asian monsoon more realistically than does the current resolution version (T62). The largest improvement occurs in the simulations of precipitation near the Tibetan Plateau and over the tropical Indian Ocean associated with the zonal dipole mode structure. The analysis suggests that NCEP’s next operational model may perform better in simulating and predicting the monsoon climate over Asia and the Indo-Pacific Oceans.


2013 ◽  
Vol 42 (7-8) ◽  
pp. 1925-1947 ◽  
Author(s):  
J. S. Chowdary ◽  
H. S. Chaudhari ◽  
C. Gnanaseelan ◽  
Anant Parekh ◽  
A. Suryachandra Rao ◽  
...  

2012 ◽  
Vol 140 (9) ◽  
pp. 3003-3016 ◽  
Author(s):  
A. Kumar ◽  
M. Chen ◽  
L. Zhang ◽  
W. Wang ◽  
Y. Xue ◽  
...  

Abstract For long-range predictions (e.g., seasonal), it is a common practice for retrospective forecasts (also referred to as the hindcasts) to accompany real-time predictions. The necessity for the hindcasts stems from the fact that real-time predictions need to be calibrated in an attempt to remove the influence of model biases on the predicted anomalies. A fundamental assumption behind forecast calibration is the long-term stationarity of forecast bias that is derived based on hindcasts. Hindcasts require specification of initial conditions for various components of the prediction system (e.g., ocean, atmosphere) that are generally taken from a long reanalysis. Trends and discontinuities in the reanalysis that are either real or spurious can arise due to several reasons, for example, the changing observing system. If changes in initial conditions were to persist during the forecast, there is a potential for forecast bias to depend over the period it is computed, making calibration even more of a challenging task. In this study such a case is discussed for the recently implemented seasonal prediction system at the National Centers for Environmental Prediction (NCEP), the Climate Forecast System version 2 (CFS.v2). Based on the analysis of the CFS.v2 for 1981–2009, it is demonstrated that the characteristics of the forecast bias for sea surface temperature (SST) in the equatorial Pacific had a dramatic change around 1999. Furthermore, change in the SST forecast bias, and its relationship to changes in the ocean reanalysis from which the ocean initial conditions for hindcasts are taken is described. Implications for seasonal and other long-range predictions are discussed.


Sign in / Sign up

Export Citation Format

Share Document