scholarly journals A new design of fractional-order dynamic matrix control with proportional–integral–derivative-type structure

2019 ◽  
Vol 52 (5-6) ◽  
pp. 567-576 ◽  
Author(s):  
Dawei Wang ◽  
Hongbo Zou ◽  
Jili Tao

Most dynamic systems in practice are of fractional order and often the models using fractional-order equations can grasp their intrinsic properties with more accuracy compared with conventional differential equations. In this paper, a fractional-order modeling-based proportional–integral–derivative-type dynamic matrix control is developed and tested on a typical industrial heating furnace system with fractional-order dynamics. The Oustaloup approximation method is first adopted to obtain the model approximation of the processes, which paves the way for the application of integer order dynamic matrix control to the fractional-order systems. Meanwhile, a set of proportional–integral–derivative-type operators are introduced in the cost function to further optimize the dynamic matrix control in terms of tracking and disturbance-rejection performance. The resulting controller bears both the merits of the dynamic matrix control and the proportional–integral–derivative, and thus improved control performance is obtained. In addition, an industrial heating furnace process system is given to test the performance of the proposed method in comparison with traditional integer order model-based dynamic matrix control, and results show that the proposed method gives improved system performance.

Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

In this study, we deal with systems that can be represented by single fractional order pole models and propose an integer order proportional–integral/proportional–integral–derivative controller design methodology for this class. The basic principle or backbone of the design methodology of the proposed controller relies on using the inverse of the fractional model and then approximating this fractional controller transfer function by a low integer order model using Oustaloup filter. The emerging integer order controller reveals itself either in pre-filtered proportional–integral or proportional–integral–derivative form by emphasizing on the dominancy concept of pole-zero configuration. Parameters of the proposed controllers depend on the parameters of the single fractional order pole model and the only free design parameter left is the overall controller gain. This free design parameter is determined via some approximating functions relying on an optimization procedure. Simulation results show that the proposed controller exhibits either satisfactory or better results with respect to some performance indices and time domain criteria when they are compared to classical integer order proportional–integral–derivative and fractional order proportional–integral–derivative controllers. Moreover, the proposed controller is applied to real-time liquid level control system. The application results show that the proposed controller outperforms the other controllers.


Author(s):  
Yongjun Shen ◽  
Jiangchuan Niu ◽  
Shaopu Yang ◽  
Sujuan Li

The classical mass-on-moving-belt model describing friction-induced vibration is studied. The primary resonance of dry-friction oscillator with fractional-order PID (FOPID) controller of velocity feedback is investigated by Krylov–Bogoliubov–Mitropolsky (KBM) asymptotic method, and the approximately analytical solution is obtained. The effects of the parameters in FOPID controller on dynamical properties are characterized by five equivalent parameters. Those equivalent parameters could distinctly illustrate the effects of the parameters in FOPID controller on the dynamical response. The effects of dry friction on the dynamical properties are characterized in the form of the equivalent linear damping and nonlinear damping. The amplitude-frequency equation for steady-state solution associated with the stability condition is also studied. A comparison of the analytical solution with the numerical results is fulfilled, and their satisfactory agreement verifies the correctness of the approximately analytical results. Finally, the effects of the coefficients and orders in FOPID controller on the amplitude-frequency curves are analyzed, and the control performances of FOPID and traditional integer-order proportional-integral-derivative (PID) controllers are compared. The comparison results show that FOPID controller is better than traditional integer-order PID controller for controlling the primary resonance of dry-friction oscillator, when the coefficients of the two controllers are the same. This presents theoretical basis for scholars and engineers to design similar fractional-order controlled system.


Author(s):  
Ali Thamallah ◽  
Anis Sakly ◽  
Faouzi M’Sahli

This article focuses on the tracking and stabilizing issues of a class of discrete switched systems. These systems are characterized by unknown switching sequences, a non-minimum phase, and time-varying or dead modes. In particular, for those governed by an indeterminate switching signal, it is very complicated to synthesize a control law able to systematically approach general reference-tracking difficulties. Taking into account the difficulty to express the dynamic of this class of systems, the present paper presents a new Dynamic matrix control method based on the multi-objective optimization and the truncated impulse response model. The formulation of the optimization problem aims to approach the general step-tracking issues under persistent and indeterminate mode changes and to overcome the stability problem along with retaining as many desirable features of the standard dynamic matrix control (DMC) method as possible. In addition, the formulated optimization problem integrates estimator variables able to manipulate the optimization procedure in favor of the active mode with an appropriate adjustment. It also provides a progressive and smooth multi-objective control law even in the presence of problems whether in subsystems or switching sequences. Finally, simulation examples and comparison tests are conducted to illustrate the potentiality and effectiveness of the developed method.


Sign in / Sign up

Export Citation Format

Share Document