scholarly journals Laplace ℓ1 robust Student’s T-filter for attitude estimation of satellites

2020 ◽  
pp. 002029402096423
Author(s):  
Xu Zhang ◽  
Xu Zhang ◽  
He Wang ◽  
Pengyu Guo ◽  
Bing Xiao

A Laplace ℓ1 robust student’s T-filter is presented for satellites to estimate their attitude state despite severe measurement noise and modeling error. Although the student’s T-filter (STF) has the capability of handling measurement noise, it cannot address the unknown modeling error. It is further sensitive to the degree of freedom (DOF). Hence, the measurement covariance is updated by using the maximum correntropy criterion to accommodate the covariance of unknown modeling error in robust filtering design. Moreover, the Laplace distribution is derived to reduce the influence of the DOF parameter by forming a surrogate function of an optimization problem. Then, the majorization minimization approach is formulated to solve such an optimization problem and present the proposed filtering algorithm in the STF framework. Numerical simulation of applying the proposed attitude estimation scheme is performed by comparing it with the third/fifth-order cubature Kalman filters.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ming-Ming Liu ◽  
Chun-Xi Dong ◽  
Yang-Yang Dong ◽  
Guo-Qing Zhao

This paper proposes a superresolution two-dimensional (2D) direction of arrival (DOA) estimation algorithm for a rectangular array based on the optimization of the atomic l0 norm and a series of relaxation formulations. The atomic l0 norm of the array response describes the minimum number of sources, which is derived from the atomic norm minimization (ANM) problem. However, the resolution is restricted and high computational complexity is incurred by using ANM for 2D angle estimation. Although an improved algorithm named decoupled atomic norm minimization (DAM) has a reduced computational burden, the resolution is still relatively low in terms of angle estimation. To overcome these limitations, we propose the direct minimization of the atomic l0 norm, which is demonstrated to be equivalent to a decoupled rank optimization problem in the positive semidefinite (PSD) form. Our goal is to solve this rank minimization problem and recover two decoupled Toeplitz matrices in which the azimuth-elevation angles of interest are encoded. Since rank minimization is an NP-hard problem, a novel sparse surrogate function is further proposed to effectively approximate the two decoupled rank functions. Then, the new optimization problem obtained through the above relaxation can be implemented via the majorization-minimization (MM) method. The proposed algorithm offers greatly improved resolution while maintaining the same computational complexity as the DAM algorithm. Moreover, it is possible to use a single snapshot for angle estimation without prior information on the number of sources, and the algorithm is robust to noise due to its iterative nature. In addition, the proposed surrogate function can achieve local convergence faster than existing functions.


Author(s):  
K. He ◽  
W. D. Zhu

Loosening of bolted connections in a structure can significantly reduce the load-bearing capacities of the structure. Detecting loosening of bolted connections at an early stage can avoid failure of the structure. Due to the complex geometry of a bolted connection and the material discontinuity between the clamped components, it is difficult to detect loosening of a bolted connection using conventional non-destructive test methods. A vibration-based method that uses changes in natural frequencies of a structure to detect the locations and extent of damage can be used to detect loosening of bolted connections, since the method focuses on detecting a stiffness reduction, which can result from loosening of the bolted connections. Experimental and numerical damage detection using the vibration-based method was conducted to detect the loosening of the bolted connections in a fullsize steel pipeline with bolted flanges. With the recent development of a predictive modeling technique for bolted connections in thin-walled structures, an accurate physics-based finite element model of the pipeline that is required by the vibration-based damage detection method is developed. A trust-region search strategy is employed to improve the damage detection method so that convergence of the damage detection algorithm can be ensured for under-determined systems, and the robustness of the algorithm can be enhanced when relatively large modeling error and measurement noise are present. The location and extent of the loosened bolted connections were successfully detected in experimental damage detection using changes in the natural frequencies of the first several modes; the exact location and extent of the loosened bolted connections can be detected in the numerical simulation where there are no modeling error and measurement noise.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
K. He ◽  
W. D. Zhu

Loosening of bolted connections in a structure can significantly reduce its load-bearing capacity. Detecting loosening of bolted connections at an early stage can prevent failure of the structure. Due to the complex geometry of a bolted connection and material discontinuity between clamped components, it is difficult to detect loosening of a bolted connection using conventional nondestructive test methods. A vibration-based method that uses changes in natural frequencies of a structure to detect locations and extent of damage can be used to detect loosening of bolted connections since the method focuses on detecting a stiffness reduction, which can result from loosening of bolted connections. Experimental and numerical damage detection was conducted to detect loosening of bolted connections in a full-size steel pipeline with bolted flanges using the vibration-based method. With the recent development of a modeling technique for bolted connections in thin-walled structures, an accurate physics-based finite element model of the pipeline that is required by the vibration-based damage detection method is developed. A trust-region search strategy is employed to improve the damage detection method so that global convergence of the damage detection algorithm can be ensured for underdetermined systems, and robustness of the algorithm can be enhanced when relatively large modeling error and measurement noise are present. The location and extent of loosened bolted connections were successfully detected in experimental damage detection using changes in natural frequencies of the first several elastic modes of the pipeline; the exact location and extent of the loosened bolted connections can be detected in numerical simulation where there are no modeling error and measurement noise.


2014 ◽  
Vol 577 ◽  
pp. 794-797 ◽  
Author(s):  
Feng Lin ◽  
Xi Lan Miao ◽  
Xiao Guang Qu

This paper presents the results of a quaternion based extend Kalman filter (EKF) and complementary filter for ArduPilotMega (APM) attitude estimation. In addition, a new method to get the measurement noise covariance matrix R is proposed. Experimental results show that the two algorithms can meet the requirements, but the complementary filter can yield better performance than EKF.


Author(s):  
Wenxin Xiong ◽  
Christian Schindelhauer ◽  
Hing Cheung So ◽  
Zhi Wang

AbstractWe investigate the problem of time-of-arrival (TOA)-based localization under possible non-line-of-sight (NLOS) propagation conditions. To robustify the squared-range-based location estimator, we follow the maximum correntropy criterion, essentially the Welsch M-estimator with a redescending influence function which behaves like $$\ell _0$$ ℓ 0 -minimization toward the grossly biased measurements, to derive the formulation. The half-quadratic technique is then applied to settle the resulting optimization problem in an alternating maximization (AM) manner. By construction, the major computational challenge at each AM iteration boils down to handling an easily solvable generalized trust region subproblem. It is worth noting that the implementation of our localization method requires nothing but merely the TOA-based range measurements and sensor positions as prior information. Simulation and experimental results demonstrate the competence of the presented scheme in outperforming several state-of-the-art approaches in terms of positioning accuracy, especially in scenarios, where the percentage of NLOS paths is not large enough.


Sign in / Sign up

Export Citation Format

Share Document