ethyl benzoate
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 147 (1) ◽  
pp. 25-34
Author(s):  
Anna J. Talcott Stewart ◽  
Terri Boylston ◽  
Lester Wilson ◽  
William R. Graves

Many members of the citrus family (Rutaceae) are valued for the aromatic compounds emitted by their flowers. Ptelea species are unusually cold-hardy members of the Rutaceae, but conflicting descriptions of the fragrance of their unisexual flowers may discourage the use of these trees. We analyzed floral volatiles and human response to these chemicals to test the hypothesis that the fragrance of staminate and pistillate flowers of these species differs. Gas chromatography and mass spectrometry showed that most volatile chemicals emitted by flowers of Ptelea trifoliata and Ptelea crenulata are monoterpenes, sesquiterpenes, and esters. Most volatiles were emitted from flowers of both sexes, but ethyl benzoate and estragole were emitted only from pistillate flowers. When concentrations of aromatics differed between sexes, they were higher for pistillate flowers, except for cis-3-hexenyl butanoate and an unidentified terpene. For P. crenulata and P. trifoliata, respectively, 81% and 77% of survey responses were from volunteers who liked the fragrance. Panelists most frequently described the scent of flowers of P. crenulata of both sexes with the words citrus, lime, and sweet. Panelists distinguished between pistillate and staminate flowers of P. trifoliata, describing the odor of pistillate flowers most frequently with the words damp-earthy, spicy, and sweet; staminate flowers were perceived as light, fresh, grassy, and pleasant. This work represents the first analysis of floral volatiles of P. crenulata and resolves conflicting prior reports regarding the floral fragrance of P. trifoliata. We conclude that differences among people rather than the sex of flowers account for conflicting prior reports of floral fragrance. The scents of flowers of P. crenulata and P. trifoliata appeal to most people and are horticultural assets of these trees.


Author(s):  
Maddalena D' Amore ◽  
Toshiaki Taniike ◽  
Minoru Terano ◽  
Anna Maria Ferrari

Understanding the structure and properties of MgCl2/TiCl4/ID nanoclusters is a key to uncover the origin of Ziegler-Natta catalysis. In this work MgCl2/TiCl4 nanoplatelets derived by machine learning and DFT calculations have been used to model the interaction with ethyl-benzoate EB (as internal donor) with available exposed sites of binary TixCly/MgCl2 systems. The influence of vicinal Ti2Cl8 and coadsorbed TiCl4 on energetic, structural and spectroscopic behaviour of EB has been considered. The adsorption of homogeneous-like TiCl4EB and TiCl4(EB)2 at the various surface sites have been also simulated. Calculations have been carried out by employing B3LYP-D2 and M06 functionals. The adducts have been characterized by computing IR and Raman spectra that have been found to provide specific fingerprints useful to identify surface species; IR spectra have been successfully compared to available experimental data.


2021 ◽  
Vol 24 ◽  
pp. 101088
Author(s):  
Rachid Khrifou ◽  
Rachid Touir ◽  
Amine Koulou ◽  
Habib El Bakri ◽  
Mohamed Rbaa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document