Effects of Recombinant Dentin Sialoprotein in Dental Pulp Cells

2012 ◽  
Vol 91 (4) ◽  
pp. 407-412 ◽  
Author(s):  
S.-Y. Lee ◽  
S.-Y. Kim ◽  
S.-H. Park ◽  
J.-J. Kim ◽  
J.-H. Jang ◽  
...  

Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Qin ◽  
Qi-Ting Huang ◽  
Michael D. Weir ◽  
Zhi Song ◽  
Ashraf F. Fouad ◽  
...  

Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


2016 ◽  
Vol 117 (7) ◽  
pp. 1522-1528 ◽  
Author(s):  
Tomomi Hayama ◽  
Naoto Kamio ◽  
Tatsu Okabe ◽  
Koichiro Muromachi ◽  
Kiyoshi Matsushima

2013 ◽  
Vol 39 (6) ◽  
pp. 801-805 ◽  
Author(s):  
Su-Mi Woo ◽  
Yun-Chan Hwang ◽  
Hoi-Soon Lim ◽  
Nam-Ki Choi ◽  
Sun-Hun Kim ◽  
...  

1997 ◽  
Vol 1 (3) ◽  
pp. 131-140 ◽  
Author(s):  
L. Stanislawski ◽  
J. P. Carreau ◽  
M. Pouchelet ◽  
Z. H. J. Chen ◽  
M. Goldberg

Sign in / Sign up

Export Citation Format

Share Document