scholarly journals Silica-Based Infiltrations for Enhanced Zirconia-Resin Interface Toughness

2019 ◽  
Vol 98 (4) ◽  
pp. 423-429 ◽  
Author(s):  
N.C. Ramos ◽  
M.R. Kaizer ◽  
T.M.B. Campos ◽  
J. Kim ◽  
Y. Zhang ◽  
...  

Novel silica-based infiltrations on the surface of zirconia have the potential to improve their bondability, allowing for the etching/silane adhesive bonding technique. Nonetheless, adhesively bonded joints are subject to mixed tensile and shear stresses when the restoration is in occlusal service. Thus, we aimed to investigate the effect of 2 novel silica-based infiltrations on the interfacial toughness of adhesively bonded zirconia using the Brazil nut method, which allows for controlled types of stresses to be applied at the interfaces. In total, 150 3Y-TZP (In-Ceram YZ; Vita) Brazil nuts were machined and randomly assigned to 3 groups: C, control (air abraded); SG, sol-gel silica infiltration; and GI, glass infiltration. SG specimens were immersed twice in silicic acid for 20 min and dried (100°C, 1 h). GI specimens were presintered (1,400°C, 1 h) before a glass powder slurry was applied to the intaglio surface. All specimens were then sintered (1,530°C, 2 h). Following adhesive bonding (Panavia F 2.0, Kuraray) and water storage (37°C) for 10 d, the Brazil nuts were subdivided into groups baseline and aged (40,000 thermal cycles between 5°C and 55°C, with a dwell time of 30 s). The Brazil nuts were subjected to axial-loading tests using various inclinations (precrack angle with load direction): Θ = 0°, 5°, 10°, 15°, or 25°, which define the stress type at the interface, from pure tension (0°) to increasing levels of shear. Under pure tension (0°), GI yielded superior interfacial fracture energy, SG and C were similar, and aging had no effect. Under predominantly shear stresses (25°), aging significantly decreased interfacial fracture energy of C and SG, while GI remained stable and was superior. The glass infiltration of the zirconia intaglio surface increases its adhesive bonding interfacial toughness. The sol-gel silica infiltration method requires improvement to obtain a homogeneous surface infiltration and an enhanced bond strength.

2001 ◽  
Vol 682 ◽  
Author(s):  
J.Y. Song ◽  
Jin Yu

ABSTRACTThe interfacial fracture energies of flexible Cu/Cr/Polyimide system were deduced from the T peel test. The T peel strength and peel angle were strongly affected by the metal thickness and the biased rf plasma power density of the polyimide pretreatment. The plastic bending works of metal and polyimide dissipated during peel test were estimated from the direct measurement of maximum root curvatures using the elastoplastic beam analysis. The interfacial fracture energy between Cr and polyimide increased with the rf plasma power density and saturated, but was pretty much independent of the metal film thickness and the peel angle.


2011 ◽  
Vol 268-270 ◽  
pp. 247-251 ◽  
Author(s):  
Hong Chang Qu ◽  
Sheng Li Zhang ◽  
Ling Ling Chen

The bonding of fiber reinforced polymer (FRP) strips and plates to the concrete structures has been found to be an effective technique for flexural strengthening. The FRP is then under both pulling and peeling forces, resulting in a combination of shear sliding and opening displacement along the FRP/concrete interface. A novel experimental set-up is studied that a peeling load is applied on the FRP sheet by a circular rod placed into the central notch of the beam. Based on the linear-elastic fracture mechanics approach, a theoretical analysis is conducted on specimens representing the peeling behavior. From the numerical analysis, the load–displacement curves, load–stiffness of FRP sheet curves, and load–fracture energy curves affected by different variables are discussed. The peel load is related to the FRP sheet stiffness and to the interfacial fracture energy. Therefore, only two material parameters, the interfacial fracture energy of FRP–concrete interface and stiffness of FRP sheets, are necessary to represent the interfacial fracture behavior. The theoretical load–deflection curves of specimens agree well with the corresponding experimental results in the literatures.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tayyebeh Mohammadi ◽  
Baolin Wan ◽  
Jian-Guo Dai ◽  
Chao Zhu

In wet lay-up process, dry fiber sheets are saturated with a polymer and applied to the concrete surface by hand. This causes relatively large variation in properties of the cured FRP composite material. It is hard to know the exact mechanical properties of the FRP constructed by wet lay-up process. In addition, the stiffness of FRP changes during debonding process due to different amount of concrete attached to the debonded FRP at different locations. It is also inevitable to have considerable variations in the strength of concrete. Therefore, the behaviour of FRP bonded concrete members varies among specimens even when the same materials are used. The variation of localized FRP stiffness and concrete strength can be combined in a single parameter as variation of the localized interfacial fracture energy. In an effort to effectively model the effects of the variation of interfacial fracture energy on the load versus deflection responses of FRP bonded concrete specimens subjected to Mode I and Mode II loading, a random white noise using a one-dimensional standard Brownian motion is added to the governing equations, yielding stochastic differential equations. By solving these stochastic equations, the bounds of load carrying capacity variation with 95% probability are found for different experimental tests.


Sign in / Sign up

Export Citation Format

Share Document