plasma power
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 50)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Nguyen Phuoc Minh

Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1108
Author(s):  
Ales Polzer ◽  
Josef Sedlak ◽  
Jan Sedlacek ◽  
Libor Benes ◽  
Katerina Mouralova

Vertical graphene, which belongs to nanomaterials, is a very promising tool for improving the useful properties of long-used and proven materials. Since the growth of vertical graphene is different on each base material and has specific deposition setting parameters, it is necessary to examine each base material separately. For this reason, a full factor design of experiment was performed with 26 = 64 rounds, which contained additional 5 central points, i.e., a total of 69 rounds of individual experiments, which was to examine the effect of input factors Temperature, Pressure, Flow, CH4, Plasma Power, and Annealing in H2 on the growth of vertical graphene on aluminum alloy AlCu4Mg. The deposition was performed using plasma-enhanced chemical vapor deposition (PECVD) technology. Mainly, the occurrence of graphene was analyzed, which was confirmed by Raman spectroscopy, as well as its thickness. The characterization was performed using electron and transmission microscopy, including an atomic force microscope. It was found that the growth of graphene occurred in 7 cases and its thickness is affected only by the interaction flow (sccm) × pretreatment H2 (sccm).


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2699
Author(s):  
Ramón Díaz de León ◽  
Ediberto Guzmán ◽  
Ricardo López González ◽  
Alejandro Díaz Elizondo ◽  
Ilse Magaña ◽  
...  

The growing concern for environmental problems has motivated the use of materials obtained from bio-based resources such as cellulose nanocrystals which have a promising application acting as fillers or reinforcements of polymeric materials. In this context, in this article, plasma-induced polymerization is proposed as a strategy to modify nanocrystals at different plasma power intensities using ε-caprolactone and δ-decalactone to improve their compatibility with polymeric matrices. The characterization was carried out using techniques such as FTIR, TGA, XRD, XPS, and AFM, with which a successful functionalization was demonstrated without altering the inherent properties of the nanocrystals. The preparation of ABS nanocomposites was carried out with the modified nanoparticles and the evaluation of the mechanical properties indicates an increase in Young’s modulus and yield stress under certain concentrations of modified cellulose nanocrystals.


Author(s):  
Maria C. Pina-Pérez ◽  
Dolores Rodrigo ◽  
Christoph Ellert ◽  
Michael Beyrer

The growing world population and the need to reduce the environmental impact of food production drive the exploration of novel protein sources. Insects are being cultivated, harvested, and processed to be applied in animal and human nutrition. The inherent microbial contamination of insect matrices requires risk management and decontamination strategies. Thermal sterilization results in unfavorable cooking effects and oxidation of fatty acids. The present study demonstrates the risk management in Acheta domesticus (home cricket) powder with a low-energy (8.7–22.0 mW/cm2, 5 min) semi-direct surface micro discharge (SMD)–cold atmospheric pressure plasma (CAPP). At a plasma power density lower than 22 mW/cm2, no degradation of triglycerides (TG) or increased free fatty acids (FFA) content was detected. For mesophilic bacteria, 1.6 ± 0.1 log10 reductions were achieved, and for Enterobacteriaceae, there were close to 1.9 ± 0.2 log10 reductions in a layer of powder. Colonies of Bacillus cereus, Bacillus subtilis, and Bacillus megaterium were identified via the mass spectral fingerprint analyzed with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). The spores of these Bacillus strains resisted to a plasma power density of 22 mW/cm2. Additional inactivation effects at non-thermal, practically non-oxidative conditions are supposed for low-intensity plasma treatments combined with the powder’s fluidization.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wittawat Poonthong ◽  
Narong Mungkung ◽  
Somchai Arunrungrusmi ◽  
Toshifumi Yuji ◽  
Youl-Moon Sung

Thin films of indium zinc oxide (IZO) were deposited on polyethylene terephthalate (PET) substrate with varying plasma power (from 100 W to 300 W) using the radio-frequency (RF) magnetron sputtering technique and electroluminescence (EL) devices. The IZO films that were obtained from this process were treated with oxygen plasma powers using the plasma-enhanced chemical vapor deposition (PECVD) system. After this treatment, the microstructural, electrical, and optical properties of IZO films were observed and reported. The result showed that the IZO/PET films was fabricated at the lowest resistivity ( 2.83 × 10 − 3   Ω · cm ), while the optical characterization displayed the maximum transmittance of 95% in the visible region with a smooth morphology and good crystalline structured, affected by the 300 W of plasma power with the optimum carrier concentration ( 4.93 × 10 21   c m − 3 ) and hall mobility (42.12 cm2/V·sec), respectively. The luminance properties and the EL efficiency were also investigated and shown a 300 W highest point of plasma power with 84 cd/m2 and 0.924 lm/W. The film properties were found responsible for producing and improving the performance of IZO/PET substrate, suitable for displaying the devices.


2021 ◽  
Vol 1155 (1) ◽  
pp. 012093
Author(s):  
T S Sazanova ◽  
L A Mochalov ◽  
A A Logunov ◽  
D G Fukina ◽  
I V Vorotyntsev

2021 ◽  
pp. 101021
Author(s):  
M. Brank ◽  
R.A. Pitts ◽  
G. Simič ◽  
P. Lamalle ◽  
M. Kocan ◽  
...  

Vacuum ◽  
2021 ◽  
Vol 186 ◽  
pp. 110069
Author(s):  
Ting-Hao Chen ◽  
Fang-Yi Chung ◽  
Wei-Fan Jiang ◽  
Chun Huang

Sign in / Sign up

Export Citation Format

Share Document