scholarly journals AMF-R Tubules Concentrate in a Pericentriolar Microtubule Domain After MSV Transformation of Epithelial MDCK Cells

1997 ◽  
Vol 45 (10) ◽  
pp. 1351-1363 ◽  
Author(s):  
Ivan R. Nabi ◽  
Ginette Guay ◽  
Danièle Simard

Autocrine motility factor receptor (AMF-R) is localized to an intracellular microtubule-associated membranous organelle, the AMF-R tubule. In well-spread untrans-formed MDCK epithelial cells, the microtubules originate from a broad perinuclear region and AMF-R tubules extend throughout the cytoplasm of the cells. In Moloney sarcoma virus (mos)-transformed MDCK (MSV-MDCK) cells, microtubules accumulate around the centrosome, forming a microtubule domain rich in stabilized detyrosinated microtubules. AMF-R tubules are quantitatively associated with this pericentriolar microtubule domain and the rough endoplasmic reticulum and lysosomes also co-distribute with the pericentriolar mass of microtubules. The Golgi apparatus is closely associated with the microtubule organizing center (MTOC) within the juxtanuclear mass of AMF-R tubules, and no co-localization of AMF-R tubules with the Golgi marker β-COP could be detected by confocal microscopy. After nocodazole treatment and washout, microtubule nucleation occurs exclusively at the centrosome of MSV-MDCK cells, and only after microtubule extension to the cell periphery does the microtubule cytoskeleton reorganize to generate the pericentriolar microtubule domain after 30–60 min. AMF-R tubules dispersed by nocodazole treatment concentrate in the pericentriolar region in parallel with the reorganization of the microtubule cytoskeleton. MSV transformation of epithelial MDCK cells results in the stabilization of a pericentriolar microtubule domain responsible for the concentration and polarized distribution of AMF-R tubules.

1993 ◽  
Vol 13 (10) ◽  
pp. 6052-6063
Author(s):  
R Kapeller ◽  
R Chakrabarti ◽  
L Cantley ◽  
F Fay ◽  
S Corvera

Phosphatidylinositol (PI)-3' kinase catalyzes the formation of PI 3,4-diphosphate and PI 3,4,5-triphosphate in response to stimulation of cells by platelet-derived growth factor (PDGF). Here we report that tyrosine-phosphorylated PDGF receptors, the p85 subunit of PI-3' kinase (p85), and activated PI-3' kinase are found in isolated clathrin-coated vesicles within 2 min of exposure of cells to PDGF, indicating that both receptor and activated PI-3' kinase enter the endocytic pathway. Immunofluorescence analysis of p85 in serum-starved cells revealed a punctate/reticular staining pattern, concentrated in the perinuclear region and displaying high focal concentration at the centrosome. In addition, partial coalignment of p85 with microtubules was observed after optical sectioning microscopy and image reconstruction. The association of p85 with the microtubule network was further evidenced by the microtubule-depolymerizing drug nocodazole, which caused a redistribution of p85 from the perinuclear region to the cell periphery. Interestingly, the most significant effect of PDGF on the distribution of p85 was an increase in the staining intensity of this protein in the perinuclear region, and this effect was eliminated by prior treatment of cells with nocodazole. These results suggest that PDGF receptor-p85 complexes internalize and transit in association with the microtubule cytoskeleton. In addition, the high concentration of p85 in intracellular structures in the absence of PDGF stimulation suggests additional roles for this protein independent of its association with receptor tyrosine kinases.


1997 ◽  
Vol 110 (24) ◽  
pp. 3043-3053 ◽  
Author(s):  
H.J. Wang ◽  
N. Benlimame ◽  
I. Nabi

Autocrine motility factor receptor (AMF-R) is a marker for a distinct smooth membranous tubule. Ilimaquinone (IQ) is a sea sponge metabolite which induces the complete vesiculation of the Golgi apparatus and we show here that the addition of IQ to MDCK cells also results in the disruption of the AMF-R tubule. By immunofluorescence microscopy, the resultant punctate AMF-R label resembles the products of IQ-mediated vesiculation of the trans-Golgi network, however, the two labels can be distinguished by confocal microscopy. AMF-R tubule fragmentation occurs after nocodazole or taxol treatment of the cells demonstrating that the action of IQ on AMF-R tubules is not related to the ability of IQ to depolymerize microtubules. IQ activity is therefore not Golgi-specific. Electron microscopy of IQ-treated cells reveals that AMF-R is distributed to fenestrated networks of narrow interconnected tubules which are distinguishable from the uniform Golgi-derived vesicles and morphologically equivalent to smooth ER. Distinct fenestrations are visible in incompletely fragmented tubules which may represent intermediates in the fragmentation process. Smooth AMF-R labeled tubules exhibit continuity with rough ER cisternae and IQ selectively targets smooth and not rough ER. AMF-R tubules can be distinguished from the intermediate compartment labeled for ERGIC-53 by confocal microscopy and thus constitute a distinct IQ-sensitive subdomain of the smooth ER.


2000 ◽  
Vol 275 (34) ◽  
pp. 26436-26440 ◽  
Author(s):  
Lourdes Herreros ◽  
José Luis Rodrı́guez-Fernández ◽  
Michael C. Brown ◽  
José L. Alonso-Lebrero ◽  
Carlos Cabañas ◽  
...  

2000 ◽  
Vol 150 (6) ◽  
pp. 1489-1498 ◽  
Author(s):  
Hui-Jun Wang ◽  
Ginette Guay ◽  
Liviu Pogan ◽  
Remy Sauvé ◽  
Ivan R. Nabi

Association between the ER and mitochondria has long been observed, and the formation of close contacts between ER and mitochondria is necessary for the ER-mediated sequestration of cytosolic calcium by mitochondria. Autocrine motility factor receptor (AMF-R) is a marker for a smooth subdomain of the ER, shown here by confocal microscopy to be distinct from, yet closely associated with the calnexin- or calreticulin-labeled ER. By EM, smooth ER AMF-R tubules exhibit direct interactions with mitochondria, identifying them as a mitochondria-associated smooth ER subdomain. In digitonin-permeabilized MDCK cells, the addition of rat liver cytosol stimulates the dissociation of smooth ER and mitochondria under conditions of low calcium. Using BAPTA chelators of various affinities and CaEGTA buffers of defined free Ca2+ concentrations and quantitative confocal microscopy, we show that free calcium concentrations <100 nM favor dissociation, whereas those >1 μM favor close association between these two organelles. Therefore, we describe a cellular mechanism that facilitates the close association of this smooth ER subdomain and mitochondria when cytosolic free calcium rises above physiological levels.


1995 ◽  
Vol 129 (2) ◽  
pp. 459-471 ◽  
Author(s):  
N Benlimame ◽  
D Simard ◽  
I R Nabi

Autocrine motility factor (AMF) is secreted by tumor cells and is capable of stimulating the motility of the secreting cells. In addition to being expressed on the cell surface, its receptor, AMF-R, is found within a Triton X-100 extractable intracellular tubular compartment. AMF-R tubules can be distinguished by double immunofluorescence microscopy from endosomes labeled with the transferrin receptor, lysosomes labeled with LAMP-2, and the Golgi apparatus labeled with beta-COP. AMF-R can also be separated from a LAMP-2 containing lysosomal fraction by differential centrifugation of MDCK cells and is found within a 100,000 g membrane pellet. By electron microscopic immunocytochemistry, AMF-R is localized predominantly to smooth vesicular and tubular membranous organelles as well as to a lesser extent to the plasma membrane and rough endoplasmic reticulum. AMF-R tubules have a variable diameter of 50-250 nm and can acquire an elaborate branched morphology. By immunofluorescence microscopy, AMF-R tubules are clearly distinguished from the calnexin labeled rough endoplasmic reticulum and AMF-R tubule expression is stable to extended cycloheximide treatment. The AMF-R tubule is therefore not a biosynthetic subcompartment of the endoplasmic reticulum. The tubular morphology of the AMF-R tubule is modulated by both the actin and microtubule cytoskeletons. In a similar fashion to that described previously for the tubular lysosome and endoplasmic reticulum, the linear extension and peripheral cellular orientation of the AMF-R tubule are dependent on the integrity of the microtubule cytoskeleton. The AMF-R tubule may thus form part of a family of microtubule-associated tubular organelles.


2018 ◽  
Author(s):  
Durga Praveen Meka ◽  
Robin Scharrenberg ◽  
Bing Zhao ◽  
Theresa König ◽  
Irina Schaefer ◽  
...  

AbstractThe centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center (Farina et al., 2016), raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here we report, using super-resolution microscopy and live-cell imaging, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoconversion/photoactivation experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin towards the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers; hence sustaining initial neuronal development.


1996 ◽  
Vol 132 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A K Rajasekaran ◽  
M Hojo ◽  
T Huima ◽  
E Rodriguez-Boulan

We characterized the role of the E-cadherin adhesion system in the formation of epithelial tight junctions using the calcium switch model. In MDCK cells cultured in low (micromolar) calcium levels, the tight junctional protein Zonula Occludens-1 (ZO-1) is distributed intracellularly in granular clusters, the larger of which codistribute with E-cadherin. Two hours after activation of E-cadherin adhesion by transfer to normal (1.8 mM) calcium levels, ZO-1 dramatically redistributed to the cell surface, where it localized in regions rich in E-cadherin. Immunoprecipitation with ZO-1 antibodies of extracts from cells kept in low calcium and 2 h after shifting to 1.8 mM Ca2+ demonstrated the association of ZO-1 with alpha-, beta-, and gamma-catenins. E-cadherin was not detected in the ZO-1 immunoprecipitates but it was found in beta-catenin immunoprecipitates that excluded ZO-1, suggesting that the binding of ZO-1 to catenins may weaken the interaction of these proteins with E-cadherin. Immunofluorescence and immunoelectron microscopy confirmed a close association of beta-catenin and ZO-1 at 0 and 2 h after Ca2+ switch. 48 h after Ca2+ switch, upon complete polarization of the epithelium, most of the ZO-1 had segregated from lateral E-cadherin and formed a distinct, separate apical ring. The ZO-1-catenin complex was not detected in fully polarized monolayers. MDCK cells permanently transformed with Moloney sarcoma virus, which expresses low levels of E-cadherin, displayed clusters of cytoplasmic ZO-1 granules and very little of this protein at the cell surface. Upon transfection with E-cadherin into Moloney sarcoma virus-MDCK cells, ZO-1 redistributed to E-cadherin-rich lateral plasma membrane but later failed to segregate into mature tight junctions. Our experiments suggest that catenins participate in the mobilization of ZO-1 from the cytosol to the cell surface early in the development of tight junctions and that neoplastic transformation may block the formation of tight junctions, either by decreasing the levels of E-cadherin or by preventing a late event: the segregation of tight junction from the zonula adherens.


1992 ◽  
Vol 118 (6) ◽  
pp. 1333-1345 ◽  
Author(s):  
I Corthésy-Theulaz ◽  
A Pauloin ◽  
S R Pfeffer

The localization of the Golgi complex depends upon the integrity of the microtubule apparatus. At interphase, the Golgi has a restricted pericentriolar localization. During mitosis, it fragments into small vesicles that are dispersed throughout the cytoplasm until telophase, when they again coalesce near the centrosome. These observations have suggested that the Golgi complex utilizes a dynein-like motor to mediate its transport from the cell periphery towards the minus ends of microtubules, located at the centrosome. We utilized semi-intact cells to study the interaction of the Golgi complex with the microtubule apparatus. We show here that Golgi complexes can enter semi-intact cells and associate stably with cytoplasmic constituents. Stable association, termed here "Golgi capture," requires ATP hydrolysis and intact microtubules, and occurs maximally at physiological temperature in the presence of added cytosolic proteins. Once translocated into the semi-intact cell cytoplasm, exogenous Golgi complexes display a distribution similar to endogenous Golgi complexes, near the microtubule-organizing center. The process of Golgi capture requires cytoplasmic tubulin, and is abolished if cytoplasmic dynein is immunodepleted from the cytosol. Cytoplasmic dynein, prepared from CHO cell cytosol, restores Golgi capture activity to reactions carried out with dynein immuno-depleted cytosol. These results indicate that cytoplasmic dynein can interact with isolated Golgi complexes, and participate in their accumulation near the centrosomes of semi-intact, recipient cells. Thus, cytoplasmic dynein appears to play a role in determining the subcellular localization of the Golgi complex.


1984 ◽  
Vol 99 (1) ◽  
pp. 70s-75s ◽  
Author(s):  
M Miller ◽  
F Solomon

The microtubules of the mature erythrocyte of the chicken are confined to a band at the periphery. Whole-mount electron microscopy after extraction reveals that the number of microtubules in each cell is almost the same. All the microtubules can be depolymerized by incubation in the cold, and the marginal band can be quantitatively and qualitatively reformed by return to 39 degrees C. These properties allow the reformation of the marginal band to be treated as an in vivo microtubule assembly reaction. The kinetics of this reaction and the intermediates detected during reformation suggest a mechanism of microtubule organization that is distinct from that observed in other cell types. Apparently only one or two growing microtubule ends are available for assembly--assembly is only detected at the cell periphery, even at early times--and there is no evidence of the participation of a microtubule-organizing center.


Sign in / Sign up

Export Citation Format

Share Document