Beyond Phonology: Visual Processes Predict Alphanumeric and Nonalphanumeric Rapid Naming in Poor Early Readers

2016 ◽  
Vol 51 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Richard S. Kruk ◽  
Cassia Luther Ruban

Visual processes in Grade 1 were examined for their predictive influences in nonalphanumeric and alphanumeric rapid naming (RAN) in 51 poor early and 69 typical readers. In a lagged design, children were followed longitudinally from Grade 1 to Grade 3 over 5 testing occasions. RAN outcomes in early Grade 2 were predicted by speeded and nonspeeded visual processing measures, after controlling for initial (Grade 1) RAN, matrix reasoning, phonological awareness, and word decoding abilities. A predictive influence of backward visual masking—a speeded visual discrimination task—was found for nonalphanumeric RAN in early Grade 2 but not for alphanumeric RAN or subsequent RAN ability in Grades 2 and 3. A nonspeeded predictor involving controlled visual attention accounted for significant variance in early Grade 2 RAN in the poor early reader group. Results are discussed in relation to Wolf, Bowers, and Biddle’s conceptualization of rapid naming—in particular, on the roles of visual processes in speeded low and nonspeeded high spatial frequency visual information in predicting RAN.

1999 ◽  
Vol 11 (3) ◽  
pp. 300-311 ◽  
Author(s):  
Edmund T. Rolls ◽  
Martin J. Tovée ◽  
Stefano Panzeri

Backward masking can potentially provide evidence of the time needed for visual processing, a fundamental constraint that must be incorporated into computational models of vision. Although backward masking has been extensively used psychophysically, there is little direct evidence for the effects of visual masking on neuronal responses. To investigate the effects of a backward masking paradigm on the responses of neurons in the temporal visual cortex, we have shown that the response of the neurons is interrupted by the mask. Under conditions when humans can just identify the stimulus, with stimulus onset asynchronies (SOA) of 20 msec, neurons in macaques respond to their best stimulus for approximately 30 msec. We now quantify the information that is available from the responses of single neurons under backward masking conditions when two to six faces were shown. We show that the information available is greatly decreased as the mask is brought closer to the stimulus. The decrease is more marked than the decrease in firing rate because it is the selective part of the firing that is especially attenuated by the mask, not the spontaneous firing, and also because the neuronal response is more variable at short SOAs. However, even at the shortest SOA of 20 msec, the information available is on average 0.1 bits. This compares to 0.3 bits with only the 16-msec target stimulus shown and a typical value for such neurons of 0.4 to 0.5 bits with a 500-msec stimulus. The results thus show that considerable information is available from neuronal responses even under backward masking conditions that allow the neurons to have their main response in 30 msec. This provides evidence for how rapid the processing of visual information is in a cortical area and provides a fundamental constraint for understanding how cortical information processing operates.


2015 ◽  
Vol 45 (10) ◽  
pp. 2111-2122 ◽  
Author(s):  
W. Li ◽  
T. M. Lai ◽  
C. Bohon ◽  
S. K. Loo ◽  
D. McCurdy ◽  
...  

BackgroundAnorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities – event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI) – to test for abnormal activity associated with early visual signaling.MethodWe acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems.ResultsAN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces.ConclusionsResults provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.


Author(s):  
Alice Mado Proverbio ◽  
and Alberto Zani

A hemispheric asymmetry is known for the processing of global vs. local visual information. In this study, we investigated the existence of a hemispheric asymmetry for visual processing of low vs. high spatial frequency gratings. Event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemi-fields. Stimulus duration was 80 ms and ISI ranged between 850-1000 ms. Participants had to pay attention and respond to targets based on their spatial frequency and location, or to passively look at the stimuli. C1 and P1 visual responses, as well as a later Selection negativity and a P300 components of ERPs were quantified and subjected to repeated-measure ANOVAs. Overall, performance was faster for the RVF, thus suggesting a left hemispheric advantage for attentional selection of local elements. Similarly, the analysis of mean area amplitude of C1 (60-110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F-L+) at left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry.


2006 ◽  
Vol 18 (2) ◽  
pp. 258-266 ◽  
Author(s):  
R. Weidner ◽  
N. J. Shah ◽  
G. R. Fink

Four-dot masking is a new form of visual masking that does not involve local contour interactions or spatial superimposition of the target stimulus and the mask (as, e.g., in pattern or metacontrast masking). Rather, the effective masking mechanism is based on object substitution. Object substitution masking occurs when low-level visual information representations are altered before target identification through iterative interaction with high-level visual processing stages has been completed. Interestingly, object substitution interacts with attention processes: Strong masking effects are observed when attentional orientation toward the target location is delayed. In contrast, no masking occurs when attention can be rapidly shifted to and engaged onto the target location. We investigated the neural basis of object substitution masking by studying the interaction of spatial attention and masking processes using functional magnetic resonance imaging. Behavioral data indicated a two-way interaction between the factors Spatial Attention (valid vs. invalid cueing) and Masking (four-dot vs. pattern masking). As expected, spatial attention improved performance more strongly during object substitution masking. Functional correlates of this interaction were found in the primary visual cortex, higher visual areas, and left intraparietal sulcus. A region-of-interest analysis in these areas revealed that the largest blood oxygenation level-dependent signal changes occurred during effective four-dot masking. In contrast, the weakest signal changes in these areas were observed when target visibility was highest. The data suggest that these areas represent an object substitution network dedicated to the generation and testing of a perceptual hypotheses as described by the object substitution theory of masking of Di-Lollo et al. [Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507, 2000].


1983 ◽  
Vol 27 (5) ◽  
pp. 354-354
Author(s):  
Bruce W. Hamill ◽  
Robert A. Virzi

This investigation addresses the problem of attention in the processing of symbolic information from visual displays. Its scope includes the nature of attentive processes, the structural properties of stimuli that influence visual information processing mechanisms, and the manner in which these factors interact in perception. Our purpose is to determine the effects of configural feature structure on visual information processing. It is known that for stimuli comprising separable features, one can distinguish between conditions in which only one relevant feature differs among stimuli in the array being searched and conditions in which conjunctions of two (or more) features differ: Since the visual process of conjoining separable features is additive, this fact is reflected in search time as a function of array size, with feature conditions yielding flat curves associated with parallel search (no increase in search time across array sizes) and conjunction conditions yielding linearly increasing curves associated with serial search. We studied configural-feature stimuli within this framework to determine the nature of visual processing for such stimuli as a function of their feature structure. Response times of subjects searching for particular targets among structured arrays of distractors were measured in a speeded visual search task. Two different sets of stimulus materials were studied in array sizes of up to 32 stimuli, using both tachistoscope and microcomputer-based CRT presentation for each. Our results with configural stimuli indicate serial search in all of the conditions, with the slope of the response-time-by-array-size function being steeper for conjunction conditions than for feature conditions. However, for each of the two sets of stimuli we studied, there was one configuration that stood apart from the others in its set in that it yielded significantly faster response times, and in that conjunction conditions involving these particular stimuli tended to cluster with the feature conditions rather than with the other conjunction conditions. In addition to these major effects of particular targets, context effects also appeared in our results as effects of the various distractor sets used; certain of these context effects appear to be reversible. The effects of distractor sets on target search were studied in considerable detail. We have found interesting differences in visual processing between stimuli comprising separable features and those comprising configural features. We have also been able to characterize the effects we have found with configural-feature stimuli as being related to the specific feature structure of the target stimulus in the context of the specific feature structure of distractor stimuli. These findings have strong implications for the design of symbology that can enhance visual performance in the use of automated displays.


2021 ◽  
Author(s):  
Ning Mei ◽  
Roberto Santana ◽  
David Soto

AbstractDespite advances in the neuroscience of visual consciousness over the last decades, we still lack a framework for understanding the scope of unconscious processing and how it relates to conscious experience. Previous research observed brain signatures of unconscious contents in visual cortex, but these have not been identified in a reliable manner, with low trial numbers and signal detection theoretic constraints not allowing to decisively discard conscious perception. Critically, the extent to which unconscious content is represented in high-level processing stages along the ventral visual stream and linked prefrontal areas remains unknown. Using a within-subject, high-precision, highly-sampled fMRI approach, we show that unconscious contents, even those associated with null sensitivity, can be reliably decoded from multivoxel patterns that are highly distributed along the ventral visual pathway and also involving prefrontal substrates. Notably, the neural representation in these areas generalised across conscious and unconscious visual processing states, placing constraints on prior findings that fronto-parietal substrates support the representation of conscious contents and suggesting revisions to models of consciousness such as the neuronal global workspace. We then provide a computational model simulation of visual information processing/representation in the absence of perceptual sensitivity by using feedforward convolutional neural networks trained to perform a similar visual task to the human observers. The work provides a novel framework for pinpointing the neural representation of unconscious knowledge across different task domains.


2017 ◽  
Author(s):  
Ghaith Tarawneh ◽  
Vivek Nityananda ◽  
Ronny Rosner ◽  
Steven Errington ◽  
William Herbert ◽  
...  

AbstractRecently, we showed a novel property of the Hassenstein-Reichardt detector: namely, that insect motion detection can be masked by “invisible” noise, i.e. visual noise presented at spatial frequencies to which the animals do not respond when presented as a signal. While this study compared the effect of noise on human and insect motion perception, it used different ways of quantifying masking in two species. This was because the human studies measured contrast thresholds, which were too time-consuming to acquire in the insect given the large number of stimulus parameters examined. Here, we run longer experiments in which we obtained contrast thresholds at just two signal and two noise frequencies. We examine the increase in threshold produced by noise at either the same frequency as the signal, or a different frequency. We do this in both humans and praying mantises (Sphodromantis lineola), enabling us to compare these species directly in the same paradigm. Our results confirm our earlier finding: whereas in humans, visual noise masks much more effectively when presented at the signal spatial frequency, in insects, noise is roughly equivalently effective whether presented at the same frequency or a lower frequency. In both species, visual noise presented at a higher spatial frequency is a less effective mask.Summary StatementWe here show that despite having similar motion detection systems, insects and humans differ in the effect of low and high spatial frequency noise on their contrast thresholds.


2021 ◽  
Author(s):  
Nicholas M Blauch ◽  
Marlene Behrmann ◽  
David Plaut

Inferotemporal cortex (IT) in humans and other primates is topographically organized, with multiple domain-selective areas and other general patterns of functional organization. What factors underlie this organization, and what can this neural arrangement tell us about the mechanisms of high level vision? Here, we present an account of topographic organization involving a computational model with two components: 1) a feature-extracting encoder model of early visual processes, followed by 2) a model of high-level hierarchical visual processing in IT subject to specific biological constraints. In particular, minimizing the wiring cost on spatially organized feedforward and lateral connections within IT, combined with constraining the feedforward processing to be strictly excitatory, results in a hierarchical, topographic organization. This organization replicates a number of key properties of primate IT cortex, including the presence of domain-selective spatial clusters preferentially involved in the representation of faces, objects, and scenes, within-domain topographic organization such as animacy and indoor/outdoor distinctions, and generic spatial organization whereby the response correlation of pairs of units falls off with their distance. The model supports a view in which both domain-specific and domain-general topographic organization arise in the visual system from an optimization process that maximizes behavioral performance while minimizing wiring costs.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 58 ◽  
Author(s):  
J Daniel McCarthy ◽  
Colin Kupitz ◽  
Gideon P Caplovitz

Our perception of an object’s size arises from the integration of multiple sources of visual information including retinal size, perceived distance and its size relative to other objects in the visual field. This constructive process is revealed through a number of classic size illusions such as the Delboeuf Illusion, the Ebbinghaus Illusion and others illustrating size constancy. Here we present a novel variant of the Delbouef and Ebbinghaus size illusions that we have named the Binding Ring Illusion. The illusion is such that the perceived size of a circular array of elements is underestimated when superimposed by a circular contour – a binding ring – and overestimated when the binding ring slightly exceeds the overall size of the array. Here we characterize the stimulus conditions that lead to the illusion, and the perceptual principles that underlie it. Our findings indicate that the perceived size of an array is susceptible to the assimilation of an explicitly defined superimposed contour. Our results also indicate that the assimilation process takes place at a relatively high level in the visual processing stream, after different spatial frequencies have been integrated and global shape has been constructed. We hypothesize that the Binding Ring Illusion arises due to the fact that the size of an array of elements is not explicitly defined and therefore can be influenced (through a process of assimilation) by the presence of a superimposed object that does have an explicit size.


2020 ◽  
Author(s):  
Han Zhang ◽  
Nicola C Anderson ◽  
Kevin Miller

Recent studies have shown that mind-wandering (MW) is associated with changes in eye movement parameters, but have not explored how MW affects the sequential pattern of eye movements involved in making sense of complex visual information. Eye movements naturally unfold over time and this process may reveal novel information about cognitive processing during MW. The current study used Recurrence Quantification Analysis (Anderson, Bischof, Laidlaw, Risko, & Kingstone, 2013) to describe the pattern of refixations (fixations directed to previously-inspected regions) during MW. Participants completed a real-world scene encoding task and responded to thought probes assessing intentional and unintentional MW. Both types of MW were associated with worse memory of the scenes. Importantly, RQA showed that scanpaths during unintentional MW were more repetitive than during on-task episodes, as indicated by a higher recurrence rate and more stereotypical fixation sequences. This increased repetitiveness suggests an adaptive response to processing failures through re-examining previous locations. Moreover, this increased repetitiveness contributed to fixations focusing on a smaller spatial scale of the stimuli. Finally, we were also able to validate several traditional measures: both intentional and unintentional MW were associated with fewer and longer fixations; Eye-blinking increased numerically during both types of MW but the difference was only significant for unintentional MW. Overall, the results advanced our understanding of how visual processing is affected during MW by highlighting the sequential aspect of eye movements.


Sign in / Sign up

Export Citation Format

Share Document