Textile sensor for heat flow measurements

2016 ◽  
Vol 87 (2) ◽  
pp. 165-174
Author(s):  
Elena Onofrei ◽  
Teodor-Cezar Codau ◽  
Gauthier Bedek ◽  
Daniel Dupont ◽  
Cedric Cochrane

This paper describes the concept of creating and testing of a textile heat flow sensor in order to determine the amount of heat exchanged between the human body and its environment. The main advantage of this sensor is the permeability to moisture, which allows taking into account the evaporation phenomenon, contrary to the traditional heat flow sensors. Another property related to this new sensor is its flexibility conferred by the textile substrate, which allows it to be applied on deformable surfaces.

Geophysics ◽  
1985 ◽  
Vol 50 (7) ◽  
pp. 1108-1112 ◽  
Author(s):  
J. C. Dunn ◽  
H. C. Hardee

The Puhimau hot spot, on Kilauea Volcano, Hawaii, was thermally mapped using new high‐output thermopile heat flow sensors. This thermal geophysical technique allows rapid measurement of surficial heat flow, especially in regions of high heat flux where shallow burial depths can be used. Heat flow measurements ranged from 200 to [Formula: see text] over the central portion of the Puhimau hot spot. Analysis of the heat flow data combined with other geophysical measurements suggests that the Puhimau hot spot could be caused by a shallow and perhaps still molten body of magma beneath the local area. These geophysical measurements, along with a proposed shallow scientific drillhole, can provide valuable evaluation of geophysical techniques for locating magma bodies in the crust.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Zhongyuan Chen ◽  
Wanchun Chen ◽  
Xiaoming Liu ◽  
Chuang Song

An integrated navigation scheme based on multiple optical flow sensors and a strapdown inertial navigation system (SINS) are presented, instead of the global position system (GPS) aided. Multiple optical flow sensors are mounted on a micro air vehicle (MAV) at different positions with different viewing directions for detecting optical flow around the MAV. A fault-tolerant decentralized extended Kalman filter (EKF) is performed for estimating navigation errors by fusing the inertial and optical flow measurements, which can prevent the estimation divergence caused by the failure of the optical flow sensor. Then, the estimation of navigation error is inputted into the SINS settlement process for correcting the SINS measurements. The results verify that the navigation errors of SINS can be effectively reduced (even more than 9/10). Moreover, although the sensor is in a state of failure for 400 seconds, the fault-tolerant integrated navigation system can still work properly without divergence.


2017 ◽  
Vol 479 ◽  
pp. 340-353 ◽  
Author(s):  
Florian Neumann ◽  
Raquel Negrete-Aranda ◽  
Robert N. Harris ◽  
Juan Contreras ◽  
John G. Sclater ◽  
...  

2010 ◽  
Vol 47 (4) ◽  
pp. 389-408 ◽  
Author(s):  
Claire Perry ◽  
Carmen Rosieanu ◽  
Jean-Claude Mareschal ◽  
Claude Jaupart

Geothermal studies were conducted within the framework of Lithoprobe to systematically document variations of heat flow and surface heat production in the major geological provinces of the Canadian Shield. One of the main conclusions is that in the Shield the variations in surface heat flow are dominated by the crustal heat generation. Horizontal variations in mantle heat flow are too small to be resolved by heat flow measurements. Different methods constrain the mantle heat flow to be in the range of 12–18 mW·m–2. Most of the heat flow anomalies (high and low) are due to variations in crustal composition and structure. The vertical distribution of radioelements is characterized by a differentiation index (DI) that measures the ratio of the surface to the average crustal heat generation in a province. Determination of mantle temperatures requires the knowledge of both the surface heat flow and DI. Mantle temperatures increase with an increase in surface heat flow but decrease with an increase in DI. Stabilization of the crust is achieved by crustal differentiation that results in decreasing temperatures in the lower crust. Present mantle temperatures inferred from xenolith studies and variations in mantle seismic P-wave velocity (Pn) from seismic refraction surveys are consistent with geotherms calculated from heat flow. These results emphasize that deep lithospheric temperatures do not always increase with an increase in the surface heat flow. The dense data coverage that has been achieved in the Canadian Shield allows some discrimination between temperature and composition effects on seismic velocities in the lithospheric mantle.


1976 ◽  
Vol 29 (2) ◽  
pp. 243-254 ◽  
Author(s):  
Roger N. Anderson ◽  
Marcus G. Langseth ◽  
Victor Vacquier ◽  
Jean Francheteau

1987 ◽  
Vol 24 (7) ◽  
pp. 1486-1489 ◽  
Author(s):  
Malcolm Drury ◽  
Alan Taylor

Borehole heat-flow measurements are reported from six new sites in the Superior Province of the Canadian Shield. Values adjusted for glaciation effects, but not for Holocene climatic variations, range from 42 to 56 mW/m2. When these new values are combined with 21 previously published borehole values the mean is 42 mW/m2 with a standard deviation of 11 mW/m2. The data for a site on the Lac du Bonnet batholith suggest that the batholith has a thin veneer, less than 3 km, of rock of high radiogenic heat production at the surface.


1973 ◽  
Vol 19 (2) ◽  
pp. 198-208 ◽  
Author(s):  
Lawrence A. Lawver ◽  
John G. Sclater ◽  
Thomas L. Henyey ◽  
J. Rogers

2021 ◽  
Author(s):  
Robert Meier ◽  
Franz Tscheikner-Gratl ◽  
Christos Makropoulos

<p>As more and more computational power becomes available at increasingly affordable prices, the last years have seen a veritable explosion in the number of sensors and interconnected devices. This evolution is well known and often referred to as the 4th industrial revolution, or the IoT. The water sector, albeit often conservative in adopting new technologies, will profit from this continued digitalisation in various ways.</p><p>In this work we focus on the vision of covering entire sewer systems by tightly knit sensor networks which can process the generated amount of data simultaneously. Given the large number of sensors required, the only possibility to implement such a network is keeping costs as low as possible for the individual devices or use already existing sensors in multiple ways (e.g., traffic cameras helping in flood detection).</p><p>Using hardware of the Raspberry Pi ecosystem, currently retailing at less than 100$, we collected continuous video footage of an artificial open channel in a laboratory setting and used a deep neural network to extract the water level and surface velocity. The measurement accuracy of the prediction algorithm was then compared to conventional flow sensors to assess the practicality of this approach. Preliminary results in a laboratory setting indicate a sufficient prediction accuracy of the water level for engineering uses but further work is needed to verify this in a long-term field study.</p><p>After this initial stage, deploying the sensor in a real-world setting as part of the B-WaterSmart project is planned. Apart from verifying the results under real conditions, we will then be able to assess the long-term behaviour of this approach. This includes an evaluation of the maintenance effort. As the sensor is not in direct contact with the sewage, the typical need for frequent cleaning should be greatly reduced, which in turn is expected to further lower the costs.</p><p>We argue that if such a cheap sensor can ultimately be established as a viable alternative to more conventional flow sensors, the vision of sewer networks covered entirely by sensors, could become more attainable in practice.</p>


Sign in / Sign up

Export Citation Format

Share Document