Synergistic activities of binary accelerators in presence of magnesium oxide as a cure activator in the vulcanization of natural rubber

2021 ◽  
pp. 009524432110207
Author(s):  
Md Najib Alam ◽  
Vineet Kumar ◽  
Pranut Potiyaraj ◽  
Dong-Joo Lee ◽  
Jungwook Choi

We describe the synergistic activities of binary vulcanizing accelerators in presence of magnesium oxide as cure activator in the vulcanization of natural rubber. Thiuram type tetramethyl thiuram disulfide (TMTD) and thiocarbamate type zinc dimethyl dithiocarbamate (ZDMC) accelerators in combination with dibenzothiazyl disulfide (MBTS) were investigated for the vulcanization of rubber. The cure, mechanical, and thermal properties of rubber vulcanizates were studied with magnesium oxide-based cure activator. Notable synergism in the delta torque, cross-link density, and mechanical properties was found when using binary accelerators with magnesium oxide. The zinc-containing thiocarbamate accelerator, ZDMC, showed better synergistic activity in presence of magnesium oxide than the non-zinc-based thiuram accelerator, TMTD. To find out the possibility of making a zinc-oxide-free natural rubber compound, a control compound was prepared with 5 phr of zinc oxide as a cure activator with the best evaluated binary accelerators system with magnesium oxide (3:6 millimolar ratio of ZDMC to MBTS). We also compared the curing and mechanical properties of carbon black-reinforced rubber with zinc oxide and magnesium oxide separately with this binary accelerators system. The results indicated that a completely zinc-oxide-free natural rubber compound was possible with comparable values in the mechanical properties, thermal properties and a higher rate of vulcanization.

2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong ◽  
Dingfang Chen

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Dingfang Chen ◽  
Ruogu Tang

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Dingfang Chen ◽  
Ruogu Tang

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


2015 ◽  
Vol 132 (43) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kumarjyoti Roy ◽  
Md. Najib Alam ◽  
Swapan Kumar Mandal ◽  
Subhas Chandra Debnath

2017 ◽  
Vol 90 (4) ◽  
pp. 714-727 ◽  
Author(s):  
Md. Najib Alam ◽  
Pranut Potiyaraj

ABSTRACT We synthesized precipitated zinc hydroxide on the surface of precipitated silica via a conventional precipitation method. The zinc hydroxide is characterized by Fourier transform infrared spectroscope, X-ray diffraction, and field-emission scanning electron microscope measurements. The synthesized zinc hydroxide is a platelike structure with an average nano dimension of 40 nm in crystalline depth. The aim of the present study is to reduce the cure activator level of conventional environment pollutant zinc oxide in the vulcanization of natural rubber. To study the effects of the synthesized zinc hydroxide on the vulcanization of natural rubber curing, mechanical and thermal properties were determined and compared with the vulcanized properties of conventional 5 phr (per hundred grams of rubber) zinc oxide cured rubber vulcanizate. A strong enhancement in the cross-link density and mechanical properties (namely, modulus, tensile strength, and hardness) with only 2 phr of synthesized zinc hydroxide cured rubber system compared with 5 phr of conventional zinc oxide cured rubber system was found. A slightly higher thermal stability of 2 phr zinc hydroxide cured vulcanizate was observed because of better cross-link density than conventional 5 phr zinc oxide cured rubber vulcanizate. Thus, by this novel method, a greater than 60% reduction of the conventional cure activator level can be possible with improved physical properties in the vulcanization of natural rubber.


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong ◽  
Dingfang Chen

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Dingfang Chen ◽  
Ruogu Tang

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


2021 ◽  
Author(s):  
Muhammad Wasim Akhtar ◽  
Kim Jong Seok ◽  
Muddassir Ali Memon ◽  
Muhammad Yasir Khan ◽  
Muhammad Moazam Baloch

Abstract This paper demonstrated the effect of functionalized magnesium oxide (MgO) nanoparticles with 3-(Aminopropyl) triethoxysilane (APTES) as fillers on the mechanical and thermal properties of epoxy composite. The functionalization of MgO (S-MgO) considerably improved the inteface between the MgO and epoxy resin. The mechanical properties of the composites revealed that the addition of functionalized MgO improved their tensile strength, modulus of elasticity, and ductility when compared to neat epoxy. In compare to neat epoxy, the in-plane thermal conductivity of the epoxy composite with S-MgO filler improved by 10 folds. These observations indicated that the silane functionalization on MgO contributes to the formation of a strong interfacial bond and a compact interconnected network between the filler and the epoxy matrix.


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong ◽  
Dingfang Chen

In this work, ABS-g-MAH was used as the compatibilizer in poly carbonate/acrylonitrile styrene acrylate/poly(methyl methacrylate) blends. The polymer blends were prepared via a two-step method: first, raw PC, ASA, PMMA resins and ABS-g-MAH additives were completely mixed and granulated by extrusion molding, and then the standard PC/ASA/PMMA blends samples were obtained by injection molding. A comprehensive characterizations were performed on the PC/ASA/PMMA blends of their morphologies, mechanical properties and thermal properties. The results showed that the addition of ABS-g-MAH could promote the compatibilities among PC, ASA and PMMA, and ABS-g-MAH would significantly alter the mechanical and thermal properties of blends. In addition, the modified PC/ASA/PMMA was well compatible with natural rubber and cause less cytotoxicity when interacting with cells.


Sign in / Sign up

Export Citation Format

Share Document