A new method for the redundancy analysis of Petri net-based liveness enforcing supervisors

2015 ◽  
Vol 39 (5) ◽  
pp. 763-780 ◽  
Author(s):  
Gökhan Gelen ◽  
Murat Uzam ◽  
ZhiWu Li

The deadlock control of flexible manufacturing systems (FMSs) has been widely studied in the literature. Petri nets (PNs) are extensively used as a tool for modelling, analysis and controller synthesis of such systems. In general, Petri-net-based liveness enforcing supervisors (LESs) include control places ( CPs) together with their input/output arcs. It is well known that the methods proposed for computing CPs may provide redundant and necessary CPs. In this paper, a new method is proposed for redundancy test of CPs by means of supervisory control theory (SCT). The proposed method is based on the idea that after the removal of a CP from an LES, if the controlled model is still live, then the removed CP is redundant. The proposed method makes use of the TCT implementation tool of SCT. It is applicable to a PN-based LES consisting of a set of CPs. The applicability of proposed method is demonstrated by means of examples from the relevant literature. For some examples, the redundancy test provides more permissive behaviour with structurally simpler supervisors.

2020 ◽  
Vol 42 (12) ◽  
pp. 2206-2220
Author(s):  
Muhammad Bashir

The decentralized supervisory structure has drawn much attention in recent years. Many studies are reported in the paradigm of automata while few can be found in the Petri net model. This paper proposes a new method for decentralized supervisory control using the Petri net paradigm. Two efficient Algorithms are developed in the proposed method. Algorithm 1 is used to compute decentralized working zones from the given LS3PR Petri net model for flexible manufacturing systems. Algorithm 2 is used to compute the decentralized controllers that enforced liveness to the decentralized working zones. The sequential assembling is used to reconnect and controlled the working zones via decentralized controllers. The decentralized controller is added to the decentralized working zones that have common elements, that is, common transitions. The proposed method has the following advantages: (i) it can be applied to a complex Petri net model for flexible manufacturing systems, (ii) the proposed methods has less computational complexity when compared with the previous methods, (iii) the proposed method can obtain a minimal number of decentralized controllers that enforce liveness of the uncontrolled Petri net model. Experimental examples are presented to explore the applicability of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document