A robust control approach for MEMS capacitive micromachined ultrasonic transducer

2018 ◽  
Vol 41 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Yi Qin ◽  
Weijie Sun ◽  
John TW Yeow

An optimal composite nonlinear feedback control method with integral sliding mode is presented in this paper. The controller extends the travel range of the micro-electromechanical system capacitive micromachined ultrasonic transducer (CMUT). Moreover, enhanced transient response and precise tracking performance is achieved. It is known that CMUT is inherently unstable which results in pull-in phenomenon and it is very sensitive to small perturbations, so one of the major problems is to stabilize the CMUT beyond the pull-in limit with the external disturbances. In addition, the input saturation problem is significant to CMUT. Based on that, a robust control scheme is derived using composite nonlinear feedback control law combined with integral sliding mode control law. Then all the tuning parameters for the proposed control method are converted into a minimization problem and solved by particle swarm optimization algorithm automatically. We verified the effectiveness through extending the travel range of the CMUT gap by three control methods which are proportional integral derivative, composite nonlinear feedback and the method we proposed. The stability and small range tracking performance with three control methods is compared on the pull-in position of CMUT. The simulations show that the proposed control method has desired tracking performance and robustness to external disturbance with input saturation.

2016 ◽  
Vol 39 (3) ◽  
pp. 352-360 ◽  
Author(s):  
Xiaoyan Lin ◽  
Dongyun Lin ◽  
Weiyao Lan

The semi-global output regulation problem of multi-variable discrete-time singular linear systems with input saturation is investigated in this paper. A composite nonlinear feedback control law is constructed by using a low gain feedback technique for semi-global stabilisation of discrete-time singular linear systems with input saturation. The sufficient solvability conditions of the semi-global output regulation problem by composite nonlinear feedback control are established. When the composite nonlinear feedback control law is reduced to a linear control law, the solvability conditions are an exact discrete-time counterpart of the semi-global output regulation problem of continuous-time singular linear systems. With the extra control freedom of the nonlinear part in the composite nonlinear feedback control law, the transient performance of the closed-loop system can be improved by carefully choosing the linear feedback gain and the nonlinear feedback gain. The design procedure of the composite nonlinear feedback control law and the improvement of the transient performance are illustrated by a numerical example.


Author(s):  
Sonal Singh ◽  
Shubhi Purwar

Background and Introduction: The proposed control law is designed to provide fast reference tracking with minimal overshoot and to minimize the effect of unknown nonlinearities and external disturbances. Methods: In this work, an enhanced composite nonlinear feedback technique using adaptive control is developed for a nonlinear delayed system subjected to input saturation and exogenous disturbances. It ensures that the plant response is not affected by adverse effect of actuator saturation, unknown time delay and unknown nonlinearities/ disturbances. The analysis of stability is done by Lyapunov-Krasovskii functional that guarantees asymptotical stability. Results: The proposed control law is validated by its implementation on exothermic chemical reactor. MATLAB figures are provided to compare the results. Conclusion: The simulation results of the proposed controller are compared with the conventional composite nonlinear feedback control which illustrates the efficiency of the proposed controller.


1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


2018 ◽  
Vol 41 (4) ◽  
pp. 911-924
Author(s):  
Dong Ye ◽  
Wei Lu ◽  
Zhongcheng Mu

This paper investigates the coupled position and attitude control problem of an on-orbit servicing spacecraft autonomous docking to a three-axis freely tumbling target in space. A compound control law is presented to guarantee that the docking port of servicing spacecraft is always directing towards the docking port of tumbling target, which is accomplished through the combination of the coupled relative position tracking and relative attitude control. For the purpose of avoiding collision between the two spacecraft, a two-phased approach for the terminal approaching the tumbling target is proposed. Also, the compound control is composed of a nonlinear feedback control law and an integral sliding mode control law. The nonlinear feedback control law is mainly used to track the system command and the integral sliding mode control law is mainly used to deal with the external disturbances and system uncertainties to enhance the robustness of the control system. Furthermore, the control saturation problem is considered. In addition, the characteristic of integral sliding mode under the control constraint and measurement noise is also analyzed. Finally, several numerical simulations are performed to verify the effectiveness and robustness of the compound control law for autonomous docking to a three-axis freely tumbling target.


Sign in / Sign up

Export Citation Format

Share Document