autonomous docking
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 1-36
Author(s):  
Shubhdildeep S. Sohal ◽  
Bijo Sebastian ◽  
Pinhas Ben-Tzvi

Abstract This paper presents a self-reconfigurable modular robot with an integrated 2-DOF active docking mechanism. Active docking in modular robotic systems has received a lot of interest recently as it allows small versatile robotic systems to coalesce and achieve the structural benefits of large systems. This feature enables reconfigurable modular robotic systems to bridge the gap between small agile systems and larger robotic systems. The proposed self-reconfigurable mobile robot design exhibits dual mobility using a tracked drive mechanism for longitudinal locomotion and a wheeled drive mechanism for lateral locomotion. The 2-DOF docking interface allows for efficient docking while tolerating misalignments. To aid autonomous docking, visual marker-based tracking is used to detect and re-position the source robot relative to the target robot. The tracked features are then used in Image-Based Visual Servoing to bring the robots close enough for the docking procedure. The hybrid-tracking algorithm allows eliminating external pixelated noise in the image plane resulting in higher tracking accuracy along with faster frame update on a low-cost onboard computational device. This paper presents the overall mechanical design and the integration details of the modular robotic module with the docking mechanism. An overview of the autonomous tracking and docking algorithm is presented along-with a proof-of-concept real world demonstration of the autonomous docking and self-reconfigurability. Experimental results to validate the robustness of the proposed tracking method, as well as the reliability of the autonomous docking procedure, are also presented.


2021 ◽  
pp. 392-403
Author(s):  
A. M. Burgueño-Romero ◽  
J. R. Ruiz-Sarmiento ◽  
J. Gonzalez-Jimenez

Author(s):  
Shubhdildeep S. Sohal ◽  
Pinhas Ben-Tzvi

Abstract This paper presents a target detection technique, which combines a supervised learning model with sensor data to eliminate false positives for a given input image frame. Such a technique aids with selective docking procedures where multiple robots are present in the environment. Hence the sensor data provides additional information for this decision making process. Senor accuracy plays a crucial role when the motion of the robot is defined by the use of data recorded by its sensors. The uncertainties in the sensory data can cause misalignments due to poor calibration of the sensor, which can result in poor positioning of the robot relative to its target. Such misalignments can play a significant role where certain accuracy is desired. Therefore, it is necessary to minimize such misalignments to achieve certainty for the robot interaction with its target. The work proposed in this paper allows achieving such accuracy using a vision-based approach by eliminating all false occurrences leading to selective interactions with the target. The proposed methodology is validated using a self-reconfigurable mobile robot capable of hybrid Wheeled-Tracked mobility, as an application towards autonomous docking of mobile robotic modules.


2020 ◽  
Vol 10 (15) ◽  
pp. 5302
Author(s):  
Sheng-Feng Lin ◽  
Cheng-Huan Chen

Built-in autonomous stereo vision devices play a critical role in the autonomous docking instruments of space vehicles. Traditional stereo cameras for space autonomous docking use charge-coupled device (CCD) image sensors, and it is difficult for the overall size to be reduced due to the size of the CCD. In addition, only the few outermost elements of the camera lens use radiation-resistant optical glass material. In this paper, a complementary metal–oxide semiconductor (CMOS) device is used as the image sensor, and radiation-resistant optical glass material is introduced to all lens elements in order to make a compact and highly reliable space grade instrument. Despite the limited available material, a fixed focus module with 7 lens elements and overall length of 42 mm has been achieved, while meeting all the required performance demands for the final vision-guided docking process.


2020 ◽  
Vol 196 ◽  
pp. 106840 ◽  
Author(s):  
Petar Trslic ◽  
Matija Rossi ◽  
Luke Robinson ◽  
Cathal W. O’Donnel ◽  
Anthony Weir ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
Author(s):  
John Papayanopoulos ◽  
Kevin Webb ◽  
Jonathan Rogers

Abstract Unmanned aerial vehicles are increasingly being tasked to connect to payload objects or docking stations for the purposes of package transport or recharging. However, autonomous docking creates challenges in that the air vehicle must precisely position itself with respect to the dock, oftentimes in the presence of uncertain winds and measurement errors. This paper describes an autonomous docking mechanism comprising a static ring and actuated legs, coupled with an infrared tracking device for closed-loop docking maneuvers. The dock’s unique mechanical design enables precise passive positioning such that the air vehicle slides into a precise location and orientation in the dock from a wide range of entry conditions. This leads to successful docking in the presence of winds and sensor measurement errors. A closed-loop infrared tracking system is also described in which the vehicle tracks an infrared beacon located on the dock during the descent to landing. A detailed analysis is presented describing the interaction dynamics between the aircraft and the dock, and system parameters are optimized through the use of trade studies and Monte Carlo analysis with a three degree-of-freedom simulation model. Experimental results are presented demonstrating successful docking maneuvers of an autonomous air vehicle in both indoor and outdoor environments. These repeatable docking experiments verify the robustness and practical utility of the dock design for a variety of emerging applications.


Sign in / Sign up

Export Citation Format

Share Document