A novel robust non-fragile control approach for a class of uncertain linear systems with input constraints

2018 ◽  
Vol 41 (8) ◽  
pp. 2365-2373 ◽  
Author(s):  
Keke Shi ◽  
Chuang Liu ◽  
Zhaowei Sun ◽  
George Vukovich

This paper addresses the non-fragile control problem for a class of uncertain linear systems subject to model uncertainty, controller perturbations, fault signals and input constraints. The controller to be designed is supposed to have additive gain perturbations. A novel state feedback controller is proposed based on the exact available expectation of a Bernoulli random variable, which is introduced to model the feature of the controller gain perturbation that randomly occurs. By using Lyapunov stability theory, new sufficient conditions are derived to design non-fragile controller for a class of uncertain linear systems considering input constraints. Compared with the existing non-fragile state feedback controller methods, the non-fragile property is fully considered to improve the tolerance of uncertainties in the controller, where the conservativeness can be reduced via the Bernoulli random variable. The effectiveness of the proposed control strategy is illustrated by two numerical examples.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Wei Qin ◽  
Gang Liu ◽  
Li-Xin Wang ◽  
Zhi-Qiang Zheng

This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI) can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.


2011 ◽  
Vol 403-408 ◽  
pp. 3813-3818
Author(s):  
Jian Wu Zhu ◽  
Yuan Chun Ding

This paper is concerned with the problem of robust stability and stabilization of singular systems with uncertainties in both the derivative and state matrices. By using a parameter dependent Lyapunov function, we derive the LMI-based sufficient conditions for the stabilization of the singular systems. Secondly, by solving these LMIs, a proportional plus derivative (PD) state feedback controller is designed for the closed-loop systems to be quadratically normal and quadratically stable (QNQS). Finally, the numerical example is given to show the effectiveness of the proposed theorems.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 359
Author(s):  
Nan Liu ◽  
Hui Pang ◽  
Rui Yao

In order to achieve better dynamics performances of a class of automobile active suspensions with the model uncertainties and input delays, this paper proposes a generalized robust linear H2/H∞ state feedback control approach. First, the mathematical model of a half-automobile active suspension is established. In this model, the H∞ norm of body acceleration is determined as the performance index of the designed controller, and the hard constraints of suspension dynamic deflection, tire dynamic load and actuator saturation are selected as the generalized H2 performance output index of the designed controller to satisfy the suspension safety requirements. Second, a generalized H2/H∞ guaranteed cost state-feedback controller is developed in terms of Lyapunov stability theory. In addition, the Cone Complementarity Linearization (CCL) algorithm is employed to convert the generalized H2/H∞ output-feedback control problem into a finite convex optimization problem (COP) in a linear matrix inequality framework. Finally, a numerical simulation case of this half-automobile active suspension is presented to illustrate the effectiveness of the proposed controller in frequency-domain and time-domain.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yucai Ding ◽  
Hui Liu

The problems of reachable set estimation and state-feedback controller design are investigated for singular Markovian jump systems with bounded input disturbances. Based on the Lyapunov approach, several new sufficient conditions on state reachable set and output reachable set are derived to ensure the existence of ellipsoids that bound the system states and output, respectively. Moreover, a state-feedback controller is also designed based on the estimated reachable set. The derived sufficient conditions are expressed in terms of linear matrix inequalities. The effectiveness of the proposed results is illustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document