scholarly journals Estimation and Synthesis of Reachable Set for Singular Markovian Jump Systems

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yucai Ding ◽  
Hui Liu

The problems of reachable set estimation and state-feedback controller design are investigated for singular Markovian jump systems with bounded input disturbances. Based on the Lyapunov approach, several new sufficient conditions on state reachable set and output reachable set are derived to ensure the existence of ellipsoids that bound the system states and output, respectively. Moreover, a state-feedback controller is also designed based on the estimated reachable set. The derived sufficient conditions are expressed in terms of linear matrix inequalities. The effectiveness of the proposed results is illustrated by numerical examples.

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Li Li ◽  
Qingling Zhang ◽  
Yi Zhang ◽  
Baoyan Zhu

This paper investigates the problem ofH∞fuzzy control for a class of nonlinear singular Markovian jump systems with time delay. This class of systems under consideration is described by Takagi-Sugeno (T-S) fuzzy models. Firstly, sufficient condition of the stochastic stabilization by the method of the augmented matrix is obtained by the state feedback. And a designed algorithm for the state feedback controller is provided to guarantee that the closed-loop system not only is regular, impulse-free, and stochastically stable but also satisfies a prescribedH∞performance for all delays not larger than a given upper bound in terms of linear matrix inequalities. ThenH∞fuzzy control for this kind of systems is also discussed by the static output feedback. Finally, numerical examples are given to illustrate the validity of the developed methodology.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongyi Tang

The problem of finite-timeL2-L∞control for Markovian jump systems (MJS) is investigated. The systems considered time-varying delays, actuator saturation, and polytopic uncertain transition description. The purpose of this paper is to design a state feedback controller such that the system is finite-time bounded (FTB) and a prescribedL2-L∞disturbance attenuation level during a specified time interval is guaranteed. Based on the Lyapunov method, a linear matrix inequality (LMI) optimization problem is formulated to design the delayed feedback controller which satisfies the given attenuation level. Finally, illustrative examples show that the proposed conditions are effective for the design of robust state feedback controller.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Yingqi Zhang ◽  
Wei Cheng ◽  
Xiaowu Mu ◽  
Xiulan Guo

This paper addresses the problem of finite-timeH∞control via observer-based state feedback for a family of singular Markovian jump systems (SMJSs) with time-varying norm-bounded disturbance. Firstly, the concepts of singular stochastic finite-time boundedness and singular stochastic finite-timeH∞stabilization via observer-based state feedback are given. Then an observer-based state feedback controller is designed to ensure singular stochastic finite-timeH∞stabilization via observer-based state feedback of the resulting closed-loop error dynamic SMJS. Sufficient criteria are presented for the solvability of the problem, which can be reduced to a feasibility problem involving linear matrix inequalities with a fixed parameter. As an auxiliary result, we also discuss the problem of finite-time stabilization via observer-based state feedback of a class of SMJSs and give sufficient conditions of singular stochastic finite-time stabilization via observer-based state feedback for the class of SMJSs. Finally, illustrative examples are given to demonstrate the validity of the proposed techniques.


Author(s):  
Hongping Niu ◽  
Lin Li ◽  
Pengnan Wang

This paper is concerned with the problem of mode-dependent robust and non-fragile finite-time [Formula: see text] control for a class of nonlinear singular Markovian jump systems (NSMJSs) with parameter uncertainties and time-varying norm-bounded disturbance. Some sufficient conditions ensuring the singular stochastic [Formula: see text] finite-time boundedness (SS[Formula: see text]FTB) are developed for the given system by using the stochastic analysis and linear matrix inequality techniques. Then, a finite-time [Formula: see text] state feedback controller is designed, which can guarantee the [Formula: see text] finite-time boundedness of the closed-loop systems. Furthermore, a robust and non-fragile finite-time [Formula: see text] state feedback controller is also provided to ensure the [Formula: see text] finite-time boundedness of the closed-loop systems when the controller gain has an additive perturbation. Finally, two numerical examples are given to illustrate the effectiveness of the obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongsheng Lin ◽  
Ying Li ◽  
Guoliang Wang

This paper discussesH∞control problems of continuous-time and discrete-time singular Markovian jump systems (SMJSs) with bounded transition probabilities. Improved sufficient conditions for continuous-time SMJSs to be regular, impulse free, and stochastically stable withγ-disturbance attenuation are established via less conservative inequality to estimate the transition jump rates, so are the discrete-time SMJSs. With the obtained conditions, the design of a state feedback controller which ensures the resulting closed-loop system to be stochastically admissible and withH∞performance is given in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are presented to show the effectiveness and the benefits of the proposed approaches.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Guoliang Wang ◽  
Hongyi Li

This paper considers the H∞ control problem for a class of singular Markovian jump systems (SMJSs), where the jumping signal is not always available. The main contribution of this paper introduces a new approach to a mode-independent (MI) H∞ controller by exploiting the nonfragile method. Based on the given method, a unified control approach establishing a direct connection between mode-dependent (MD) and mode-independent controllers is presented, where both existence conditions are given in terms of linear matrix inequalities. Moreover, another three cases of transition probability rate matrix (TRPM) with elementwise bounded uncertainties, being partially unknown and to be designed are analyzed, respectively. Numerical examples are used to demonstrate the effectiveness of the proposed methods.


2012 ◽  
Vol 235 ◽  
pp. 254-258 ◽  
Author(s):  
Shao Hua Long ◽  
Shou Ming Zhong

The problem of the stochastic admissibility for a class of nonlinear singular Markovian jump systems with time-delay and partially unknown transition probabilities is discussed in this note. The considered singular matrices Er(t) in the discussed system are mode-dependent. By using the free-weighting matrix method and the Lyapunov functional method, a sufficient condition which guarantees the considered system to be stochastically admissible is presented in the form of linear matrix inequalities(LMIs). Finally, a numerical example is given to show the effectiveness of the presented method.


2021 ◽  
Vol 26 (2) ◽  
pp. 187-206
Author(s):  
Venkatesan Nithya ◽  
Rathinasamy Sakthivel ◽  
Yong Ren

The H∞ filtering problem for a class of networked nonlinear Markovian jump systems subject to randomly occurring distributed delays, nonlinearities, quantization effects, missing measurements and sensor saturation is investigated in this paper. The measurement missing phenomenon is characterized via a random variable obeying the Bernoulli stochastic distribution. Moreover, due to bandwidth limitations, the measurement output is quantized using a logarithmic quantizer and then transmitted to the filter. Further, the output measurements are affected by sensor saturation since the communication links between the system and the filter are unreliable and is described by sector nonlinearities. The objective of this work is to design a quantized resilient filter that guarantees not only the stochastic stability of the augmented filtering error system but also a prespecified level of H∞ performance. Sufficient conditions for the existence of desired filter are established with the aid of proper Lyapunov–Krasovskii functional and linear matrix inequality approach together with stochastic analysis theory. Finally, a numerical example is presented to validate the developed theoretical results.


Sign in / Sign up

Export Citation Format

Share Document