Fault-tolerant attitude control for flexible spacecraft subject to input and state constraint

2020 ◽  
Vol 42 (14) ◽  
pp. 2660-2674
Author(s):  
Mehdi Golestani ◽  
Seyed Majid Esmaeilzadeh ◽  
Bing Xiao

This paper considers the problem of fault-tolerant attitude control for a flexible spacecraft subject to input and state constraint. Particularly, a new sliding mode-based attitude control with fixed-time convergent for the flexible spacecraft is developed in which the convergence rate of the system state is improved both far from and at close range of the origin. In contrast to the existing complicated prescribed performance controls (PPC), the proposed PPC possesses a much simpler structure due to the use of a novel constraint concept without employing error transformation. It also introduces a modified prescribed performance function (MPPF) to explicitly determine the settling time. It is rigorously proved that the attitude variable is kept within the predefined constraint boundaries even when the actuator saturation is taken into account. Moreover, the proposed controller is inherently continuous and the chattering is effectively reduced. An adaptive mechanism is developed in which no prior knowledge of the lumped uncertainties is required. Finally, numerical simulations are presented to demonstrate that the proposed controller is able to successfully accomplish attitude control with high attitude pointing accuracy and stability. More specifically, it provides faster convergence (improvement percentage of convergence time (IP_CT) is about 18%) and more accurate control (improvement percentages of MRPs (IP_MRPs) and angular velocity (IP_AV) are about 60% and 80%, respectively) under healthy actuators. Values of IP_CT, IP_CT, and IP_AV are 50%, 99.9% and 99.9% under faulty actuators, respectively.

2022 ◽  
Vol 19 (3) ◽  
pp. 2286-2309
Author(s):  
Gaowang Zhang ◽  
◽  
Feng Wang ◽  
Jian Chen ◽  
Huayi Li

<abstract> <p>This study focuses on the attitude control of a flexible spacecraft comprising rotating appendages, magnetic bearings, and a satellite platform capable of carrying flexible solar panels. The kinematic and dynamic models of the spacecraft were established using Lagrange methods to describe the translation and rotation of the spacecraft system and its connected components. A simplified model of the dynamics of a five-degrees-of-freedom (DOF) active magnetic bearing was developed using the equivalent stiffness and damping methods based on the magnetic gap variations in the magnetic bearing. Next, a fixed-time sliding mode control method was proposed for each component of the spacecraft to adjust the magnetic gap of the active magnetic bearing, realize a stable rotation of the flexible solar panels, obtain a high inertia for the appendage of the spacecraft, and accurately control the attitude. Finally, the numerical simulation results of the proposed fixed-time control method were compared with those of the proportional-derivative control method to demonstrate the superiority and effectiveness of the proposed control law.</p> </abstract>


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1709
Author(s):  
Syed Muhammad Amrr ◽  
Abdulrahman Alturki ◽  
Ankit Kumar ◽  
M. Nabi

This paper explores the problem of attitude stabilization of spacecraft under multiple uncertainties and constrained bandwidth resources. The proposed control law is designed by combining the sliding mode control (SMC) technique with a prescribed performance control (PPC) method. Further, the control input signal is executed in an aperiodic time framework using the event-trigger (ET) mechanism to minimize the control data transfer through a constrained wireless network. The SMC provides robustness against inertial uncertainties, disturbances, and actuator faults, whereas the PPC strategy aims to achieve a predefined system performance. The PPC technique is developed by transforming the system attitude into a new variable using the prescribed performance function, which acts as a predefined constraint for transient and steady-state responses. In addition, the ET mechanism updates the input value to the actuator only when there is a violation of the triggering rule; otherwise, the actuator output remains at a fixed value. Moreover, the proposed triggering rule is constituted through the Lyapunov stability analysis. Thus, the proposed approach can be extended to a broader class of complex nonlinear systems. The theoretical analyses prove the uniformly ultimately bounded stability of the closed-loop system and the non-existence of the Zeno behavior. The effectiveness of the proposed methodology is also presented along with the comparative studies through simulation results.


2021 ◽  
Author(s):  
milad alipour ◽  
Maryam Malekzadeh ◽  
alireza ariaei

Abstract In this article, a novel multi-purpose modified fractional-order nonsingular terminal sliding mode (MFONTSM) controller is designed for the flexible spacecraft attitude control and appendages passive vibration suppression, assuming the control torque saturation in the system dynamics. Furthermore, an active FONTSM controller is proposed separately to perform active vibration suppression of the flexible appendages using piezoelectric actuators. The fixed-time stability of the closed-loop system for both the passive and active controllers is analyzed and proved using the Lyapunov theorem. Finally, the performance of the proposed controllers has been tested in the presence of uncertainties, external disturbances, and the absence of the damping matrix in order to study the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiguo Han ◽  
Minghao Wang ◽  
Xunliang Yan ◽  
Hang Qian

This paper focuses on the potential actuator failures of spacecraft in practical engineering applications. Aiming at the shortcomings and deficiencies in the existing attitude fault-tolerant control system design, combined with the current research status of attitude fault-tolerant control technology, we carry out high-precision, fast-convergent attitude tracking algorithms. Based on the adaptive nonsingular terminal sliding mode control theory, we design a kind of fixed-time convergence control method. This method solves the problems of actuator faults, actuator saturation, external disturbances, and inertia uncertainties. The control method includes control law design and controller design. The designed fixed-time adaptive nonsingular terminal sliding mode control law is applicable to the development of fixed-time fault-tolerant attitude tracking controller with multiple constraints. The designed controller considers the saturation of the actuator output torque so that the spacecraft can operate within the saturation magnitude without on-line fault estimation. Lyapunov stability analysis shows that under multiple constraints such as actuator saturation, external disturbances, and inertia uncertainties, the controller has fast convergence and has good fault tolerance to actuator fault. The numerical simulation shows that the controller has good performance and low-energy consumption in attitude tracking control.


Sign in / Sign up

Export Citation Format

Share Document