Optimal model predictive rejection control for nonlinear parabolic trough collector with lumped disturbances

Author(s):  
Xian-hua Gao ◽  
Shangshang Wei ◽  
Zhi-gang Su

It is challenging and crucial to achieve unbiased tracking control for parabolic trough collector field as it is vulnerable to various types of disturbances or uncertainties such as unmeasured external disturbances, parameter perturbation and model mismatch. To solve this issue, an optimal model predictive rejection control strategy is put forward in a composite designed manner, in which all disturbances/uncertainties are dealt with as lumped disturbances. A generalized extended state observer is firstly employed to estimate the lumped disturbances, and then a feedback controller is devised based on optimal model predictive control to compensate the influences of the lumped disturbances on output. Stability analysis of the closed-loop system has been presented. It shows that the proposed composite controller can track given references without offset in the presence of lumped disturbances while not sacrificing its nominal performance in the absence of disturbances. Simulations conducted on a numerical example and a practical application for parabolic trough collector validate our conclusions.

2015 ◽  
Vol 46 (4) ◽  
pp. 347-368 ◽  
Author(s):  
Cheng Li ◽  
T. Yan ◽  
Ruzhu Wang ◽  
Liwei Wang ◽  
T. X. Li ◽  
...  

Author(s):  
Fernanda Nascimento ◽  
Elí Wilfredo Zavaleta Aguilar

2021 ◽  
pp. 107754632098794
Author(s):  
Meysam Azhdari ◽  
Tahereh Binazadeh

This article studies the uniformly ultimately bounded output tracking problem of uncertain nonlinear sandwich systems with sandwiched dead-zone nonlinearity in the presence of some practical constraints such as nonsymmetric input saturation, model uncertainties, time-varying external disturbances, and unknown parameters. Due to the existence of both dead-zone and saturation nonlinearities, the design process is more complicated; therefore, to solve the design complexities, the designing process is divided into two phases. The proposed method leads to output tracking with acceptable accuracy. Moreover, all signals in the closed-loop system are ultimately bounded. Simulation results illustrate the applicability and effectiveness of the proposed method by its application on two practical sandwich systems (robotic system and electrohydraulic servo press system).


Sign in / Sign up

Export Citation Format

Share Document