Sodium acetate–urea composite phase change material used in building envelopes for thermal insulation

2017 ◽  
Vol 39 (4) ◽  
pp. 475-491 ◽  
Author(s):  
Yin Zhang ◽  
Xin Wang ◽  
Zhiyuan Wei ◽  
Yinping Zhang ◽  
Ya Feng

Integrating phase change material with building envelopes is an effective way to reduce cooling or heating loads, improve indoor thermal comfort and save building energy consumption. In this paper, the composite phase change material of sodium acetate and urea is prepared and its thermal–physical properties with different mixing mass ratios are investigated through experiment and T-history method. Moreover, the heat transfer model of building envelopes with phase change material is established and different phase change material locations in external walls for thermal insulation are compared based on integrated uncomfortable degree. The results show that (1) with rising urea mass fraction, both phase change temperature and latent fusion heat (enthalpy) decline; (2) strontium sulfate is an effective nucleating additive to decrease super-cooling degree for such phase change material solidification and (3) to improve indoor thermal comfort, it is preferable to put phase change material in the middle of external walls. Furthermore, the illustrative example of an office building in Chengdu indicates that phase change material insulation can lead to time lag and decrement for indoor air temperature variations. It also indicates that after inserting such phase change material into building external wall, the highest indoor temperature can be decreased by 7℃, leading to 60% cooling energy saving in one typical summer day. This work can provide guidance for building thermal design with phase change materials. Practical application:The studied sodium acetate–urea composite phase change material has been used as energy storage and thermal insulation materials inserted in envelopes for the demonstration project of low/zero energy consumption passive buildings in China.

2020 ◽  
Vol 307 ◽  
pp. 01024
Author(s):  
Nisrine Hanchi ◽  
Hamid Hamza ◽  
Rabiaa Idmoussa ◽  
Jawad Lahjomri ◽  
Abdelaziz Oubarra

The aim of this work is to study the combined insertion effect of Phase Change Materials (PCM) and thermal insulation within a partition wall separating a conditioned room from an adjacent local which is under a periodic thermal activity. This is done by a comparative study with a reference wall under the same thermal conditions. The comparison criterion is the energy density transmitted to the local conditioned in established regime. The results show that the inclusion of thermal insulation and phase change material provides a significant reduction of energy consumption of the conditioned local; thereby a judicious choice of phase change material with thermal level and range melting temperature reduces further this reduction.


2011 ◽  
Vol 399-401 ◽  
pp. 1302-1306 ◽  
Author(s):  
Wei Hua Li ◽  
Jin Feng Mao ◽  
Li Jun Wang ◽  
Lu Yan Sui

The aim of the paper is to analyze the effect of the additives on thermal conductivity of the phase change material. The experiment about heat storage and heat release performance of the composite phase change material which uses sodium acetate trihydrate as host material is studied. The effect of the expanded graphite on the composite phase change material is investigated. The results show that: expanded graphite which can be dispersed evenly in the composite phase change material, the thermal stability is well, significantly improve the thermal conductivity of the composite phase change material.


2021 ◽  
Vol 1036 ◽  
pp. 445-458
Author(s):  
Yan Deng ◽  
Yun Fei Ding ◽  
Yun Chao Zhao

The external surface of the building envelope absorbs large amounts of heat after long periods of solar radiation especially in the hot summer, leading to a dramatic increase in the cooling load and energy consumption. Phase change material (PCM) possesses the ability to reduce building energy consumption and improve thermal comfort when it is integrated with the building envelope. In this study, paraffin /expanded graphite (EG) composite phase change material was prepared to fabricate facing tile for building envelopes, with phase change facing tile (PCMT) attached to exterior walls and roofs. To present the full role played by the paraffin/ expanded graphite composite phase change material, microstructure, thermal and physical properties characteristics were investigated, thermal performance experiment of facing tile was carried out. The results showed that the maximum inner surface temperature difference between the PCMT and the ceramic tile reached 2.5°C, the maximum temperature time lag was 51 min. A simulation in EnergyPlus was used to evaluate the availability of using PCM to improve the energy efficiency of the building under the Guangzhou climate. The results showed that 2.65% energy savings were achieved. These results showed that PCM has thermal insulation performance, which would affect the indoor temperature and reduce building energy consumption to some extent.


2021 ◽  
Vol 11 (10) ◽  
pp. 4680
Author(s):  
Francesco Carlucci ◽  
Alessandro Cannavale ◽  
Angela Alessia Triggiano ◽  
Amalia Squicciarini ◽  
Francesco Fiorito

Among the adaptive solutions, phase change material (PCM) technology is one of the most developed, thanks to its capability to mitigate the effects of air temperature fluctuations using thermal energy storage (TES). PCMs belong to the category of passive systems that operate on heat modulation, thanks to latent heat storage (LHS) that can lead to a reduction of heating ventilation air conditioning (HVAC) consumption in traditional buildings and to an improvement of indoor thermal comfort in buildings devoid of HVAC systems. The aim of this work is to numerically analyze and compare the benefits of the implementation of PCMs on the building envelope in both active and passive strategies. To generalize the results, two different EnergyPlus calibrated reference models—the small office and the midrise apartment—were considered, and 25 different European cities in different climatic zones were selected. For these analyses, a PCM plasterboard with a 23 °C melting point was considered in four different thicknesses—12.5, 25, 37.5, and 50 mm. The results obtained highlighted a strong logarithmic correlation between PCM thickness and energy reduction in all the climatic zones, with higher benefits in office buildings and in warmer climates for both strategies.


Sign in / Sign up

Export Citation Format

Share Document