scholarly journals Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies

2021 ◽  
Vol 11 (10) ◽  
pp. 4680
Author(s):  
Francesco Carlucci ◽  
Alessandro Cannavale ◽  
Angela Alessia Triggiano ◽  
Amalia Squicciarini ◽  
Francesco Fiorito

Among the adaptive solutions, phase change material (PCM) technology is one of the most developed, thanks to its capability to mitigate the effects of air temperature fluctuations using thermal energy storage (TES). PCMs belong to the category of passive systems that operate on heat modulation, thanks to latent heat storage (LHS) that can lead to a reduction of heating ventilation air conditioning (HVAC) consumption in traditional buildings and to an improvement of indoor thermal comfort in buildings devoid of HVAC systems. The aim of this work is to numerically analyze and compare the benefits of the implementation of PCMs on the building envelope in both active and passive strategies. To generalize the results, two different EnergyPlus calibrated reference models—the small office and the midrise apartment—were considered, and 25 different European cities in different climatic zones were selected. For these analyses, a PCM plasterboard with a 23 °C melting point was considered in four different thicknesses—12.5, 25, 37.5, and 50 mm. The results obtained highlighted a strong logarithmic correlation between PCM thickness and energy reduction in all the climatic zones, with higher benefits in office buildings and in warmer climates for both strategies.

1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


Sign in / Sign up

Export Citation Format

Share Document