Fluid flow and heat transfer in pipework systems: I Mathematical model for dynamic modular simulation

1989 ◽  
Vol 10 (4) ◽  
pp. 143-149 ◽  
Author(s):  
K C W Ip ◽  
B. Day ◽  
D. Richardson
2019 ◽  
Vol 95 ◽  
pp. 02004
Author(s):  
Vladimir Glazar ◽  
Anica Trp ◽  
Kristian Lenic ◽  
Fran Torbarina

This paper presents numerical analysis of fluid flow and heat transfer in the heat exchanger with microchannel coil (MCHX). In accordance with previously published experimental results, 3D mathematical model has been defined and appropriate numerical simulation of heat transfer has been performed. Geometry and working parameters of cross-flow air-water heat exchanger with microchannel coil, installed in an open circuit wind tunnel and used in experimental investigations, have been applied in numerical analysis in order to validate the mathematical model. 3D model with air and water fluid flow and heat transfer domains has been used, as it gives more precise results compared to models that assume constant temperatures or constant heat fluxes on the pipe walls. Developed model comprised full length of air and water flows in the heat exchanger. Due to limitations of computational capacity, domain has been divided in multiple computational blocks in the water flow direction and then solved successively using CFD solver Fluent. Good agreement between experimentally measured and numerically calculated results has been obtained. The influence of various working parameters on heat transfer in air-water heat exchanger has been studied numerically, followed with discussion and final conclusions.


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Sign in / Sign up

Export Citation Format

Share Document