scholarly journals Optimization of Fast-steam-assisted gravity drainage for the energy-efficient operations at a heterogeneous oil-sands reservoir

2017 ◽  
Vol 36 (5) ◽  
pp. 1040-1060
Author(s):  
Jiyeon Choi ◽  
Changhyup Park ◽  
Soonhyeong Jeong

This paper discusses the energy-efficient operation of Fast-steam-assisted gravity drainage wellpad system in the presence of reservoir heterogeneity, different well constraints, and lateral flux communication between adjacent steam chambers. Fast-steam-assisted gravity drainage incorporates cyclic steam stimulation in an unrecovered area between steam-assisted gravity drainage wellpairs, and the well constraints of the wellpad system (including the injection pressure and steam injection rate at the injectors, bottom hole pressure, surface liquid rate, and steam rate at the producers) are simultaneously optimized to accomplish the minimum cumulative steam-to-oil ratio for a given bitumen recovery constraint. The higher injection pressures of the cyclic steam stimulation can result in greater efficiency by pushing the diluted fluid mixture to the steam-assisted gravity drainage producers through the cross-over zone between the steam chambers. At an early stage, a greater amount of steam should be injected through the cyclic steam stimulation work, and at the late stage, a lower injection pressure is needed to use the latent heat. The positive effects of the cyclic steam stimulation at the edges of the steam-assisted gravity drainage steam chambers are concentrated at localized flow paths where the lateral flux transport occurs due to spatial heterogeneity. A sensitivity analysis shows that the injection pressure and the steam rate produced for the steam-assisted gravity drainage wellpairs influence the energy efficiency of the entire thermal operation when compared to other configurations.

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1721-1742 ◽  
Author(s):  
Mazda Irani ◽  
Ian Gates

Summary Li et al. (2004) described three zones at the edge of steam chambers on the basis of drainage conditions: drained, partially drained, and undrained. In the drained zone, the pore pressure is controlled by injection pressure, and fluid mobility within this region is sufficient to drain additional pore pressures because of shear dilation and pore-fluid thermal expansion. The undrained zone lies beyond the partially drained zone and extends to virgin reservoir far beyond the chamber. In this zone shearing behaves under undrained conditions; by this, Li et al. (2004) mean no volume change occurs but shear lead to changes in pore pressure. Li et al. (2004) proposed that the boundaries of these zones are dependent on bitumen viscosity, which relates to the temperature distribution beyond the steam interface. Because drained/undrained conditions affect the geomechanics at the edge of the chamber, we investigate whether the assumption of Li et al. (2004) that there is no volume change within the sheared zone is correct and is supported by field data. Here, we establish the physics associated with the undrained zone at the edge of steam-assisted gravity-drainage steam chamber and explore the pressure front vs. temperature front of different oil-sand field projects. The results reveal that the drained zone governed by pressure-front advancement is greater in extent than the sheared zone. The thermodynamics of the undrained zone are discussed to derive a new theory for mechanothermal phenomena at the edge of the chamber. The results from the theory show that the drained zone extends beyond the temperature front and thus, from a geomechanical point of view, the system solely consists of the drained and partially drained zones.


Sign in / Sign up

Export Citation Format

Share Document