scholarly journals Visualization of Multidimensional Data in Nursing Science

2016 ◽  
Vol 39 (1) ◽  
pp. 112-126 ◽  
Author(s):  
Sharron L. Docherty ◽  
Allison Vorderstrasse ◽  
Debra Brandon ◽  
Constance Johnson

Nursing scientists have long been interested in complex, context-dependent questions addressing individual- and population-level challenges in health and illness. These critical questions require multilevel data (e.g., genetic, physiologic, biologic, behavioral, affective, and social). Advances in data-gathering methods have resulted in the collection of large sets of complex, multifaceted, and often non-comparable data. Scientific visualization is a powerful methodological tool for facilitating understanding of these multidimensional data sets. Our purpose is to demonstrate the utility of scientific visualization as a method for identifying associations, patterns, and trends in multidimensional data as exemplified in two studies. We describe a brief history of visual analysis, processes involved in scientific visualization, and opportunities and challenges in the use of visualization methods. Scientific visualization can play a crucial role in helping nurse scientists make sense of the structure and underlying patterns in their data to answer vital questions in the field.

2008 ◽  
Vol 7 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Niklas Elmqvist ◽  
John Stasko ◽  
Philippas Tsigas

Supporting visual analytics of multiple large-scale multidimensional data sets requires a high degree of interactivity and user control beyond the conventional challenges of visualizing such data sets. We present the DataMeadow, a visual canvas providing rich interaction for constructing visual queries using graphical set representations called DataRoses. A DataRose is essentially a starplot of selected columns in a data set displayed as multivariate visualizations with dynamic query sliders integrated into each axis. The purpose of the DataMeadow is to allow users to create advanced visual queries by iteratively selecting and filtering into the multidimensional data. Furthermore, the canvas provides a clear history of the analysis that can be annotated to facilitate dissemination of analytical results to stakeholders. A powerful direct manipulation interface allows for selection, filtering, and creation of sets, subsets, and data dependencies. We have evaluated our system using a qualitative expert review involving two visualization researchers. Results from this review are favorable for the new method.


Author(s):  
Александр Бондарев ◽  
Aleksandr Bondarev ◽  
Владимир Галактионов ◽  
Vladimir Galaktionov

The paper considers the tasks of visual analysis of multidimensional data sets of medical origin. For visual analysis, the approach of building elastic maps is used. The elastic maps are used as the methods of original data points mapping to enclosed manifolds having less dimensionality. Diminishing the elasticity parameters one can design map surface which approximates the multidimensional dataset in question much better. To improve the results, a number of previously developed procedures are used - preliminary data filtering, removal of separated clusters (flotation). To solve the scalability problem, when the elastic map is adjusted both to the region of condensation of data points and to separately located points of the data cloud, the quasi-Zoom approach is applied. The illustrations of applying elastic maps to various sets of medical data are presented.


Author(s):  
A. E. Bondarev

<p><strong>Abstract.</strong> The paper is devoted to problems of visual analysis of multidimensional data sets using an approach based on the construction of elastic maps. This approach is quite suitable for processing and visualizing of multidimensional datasets. The elastic maps are used as the methods of original data points mapping to enclosed manifolds having less dimensionality. Diminishing the elasticity parameters one can design map surface which approximates the multidimensional dataset in question much better. Then the points of dataset in question are projected to the map. The extension of designed map to a flat plane allows one to get an insight about the structure of multidimensional dataset. The paper presents the results of applying elastic maps for visual analysis of multidimensional data sets of medical origin. Previously developed data processing procedures are applied to improve the results obtained - pre-filtering of data, removal of separated clusters (flotation), quasi-Zoom.</p>


2021 ◽  
Author(s):  
Jan Michalek ◽  
Kuvvet Atakan ◽  
Christian Rønnevik ◽  
Helga Indrøy ◽  
Lars Ottemøller ◽  
...  

&lt;p&gt;The European Plate Observing System (EPOS) is a European project about building a pan-European infrastructure for accessing solid Earth science data, governed now by EPOS ERIC (European Research Infrastructure Consortium). The EPOS-Norway project (EPOS-N; RCN-Infrastructure Programme - Project no. 245763) is a Norwegian project funded by National Research Council. The aim of the Norwegian EPOS e&amp;#8209;infrastructure is to integrate data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories. Among the six EPOS-N project partners, four institutions are providing data &amp;#8211; University of Bergen (UIB), - Norwegian Mapping Authority (NMA), Geological Survey of Norway (NGU) and NORSAR.&lt;/p&gt;&lt;p&gt;In this contribution, we present the EPOS-Norway Portal as an online, open access, interactive tool, allowing visual analysis of multidimensional data. It supports maps and 2D plots with linked visualizations. Currently access is provided to more than 300 datasets (18 web services, 288 map layers and 14 static datasets) from four subdomains of Earth science in Norway. New datasets are planned to be integrated in the future. EPOS-N Portal can access remote datasets via web services like FDSNWS for seismological data and OGC services for geological and geophysical data (e.g. WMS). Standalone datasets are available through preloaded data files. Users can also simply add another WMS server or upload their own dataset for visualization and comparison with other datasets. This portal provides unique way (first of its kind in Norway) for exploration of various geoscientific datasets in one common interface. One of the key aspects is quick simultaneous visual inspection of data from various disciplines and test of scientific or geohazard related hypothesis. One of such examples can be spatio-temporal correlation of earthquakes (1980 until now) with existing critical infrastructures (e.g. pipelines), geological structures, submarine landslides or unstable slopes. &amp;#160;&lt;/p&gt;&lt;p&gt;The EPOS-N Portal is implemented by adapting Enlighten-web, a server-client program developed by NORCE. Enlighten-web facilitates interactive visual analysis of large multidimensional data sets, and supports interactive mapping of millions of points. The Enlighten-web client runs inside a web browser. An important element in the Enlighten-web functionality is brushing and linking, which is useful for exploring complex data sets to discover correlations and interesting properties hidden in the data. The views are linked to each other, so that highlighting a subset in one view automatically leads to the corresponding subsets being highlighted in all other linked views.&lt;/p&gt;


2013 ◽  
Vol 1 (1) ◽  
pp. 7 ◽  
Author(s):  
Casimiro S. Munita ◽  
Lúcia P. Barroso ◽  
Paulo M.S. Oliveira

Several analytical techniques are often used in archaeometric studies, and when used in combination, these techniques can be used to assess 30 or more elements. Multivariate statistical methods are frequently used to interpret archaeometric data, but their applications can be problematic or difficult to interpret due to the large number of variables. In general, the analyst first measures several variables, many of which may be found to be uninformative, this is naturally very time consuming and expensive. In subsequent studies the analyst may wish to measure fewer variables while attempting to minimize the loss of essential information. Such multidimensional data sets must be closely examined to draw useful information. This paper aims to describe and illustrate a stopping rule for the identification of redundant variables, and the selection of variables subsets, preserving multivariate data structure using Procrustes analysis, selecting those variables that are in some senses adequate for discrimination purposes. We provide an illustrative example of the procedure using a data set of 40 samples in which were determined the concentration of As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, and U obtained via instrumental neutron activation analysis (INAA) on archaeological ceramic samples. The results showed that for this data set, only eight variables (As, Cr, Fe, Hf, La, Nd, Sm, and Th) are required to interpret the data without substantial loss information.


2019 ◽  
Vol 2 (1) ◽  
pp. 223-251 ◽  
Author(s):  
Francesco Cutrale ◽  
Scott E. Fraser ◽  
Le A. Trinh

Embryonic development is highly complex and dynamic, requiring the coordination of numerous molecular and cellular events at precise times and places. Advances in imaging technology have made it possible to follow developmental processes at cellular, tissue, and organ levels over time as they take place in the intact embryo. Parallel innovations of in vivo probes permit imaging to report on molecular, physiological, and anatomical events of embryogenesis, but the resulting multidimensional data sets pose significant challenges for extracting knowledge. In this review, we discuss recent and emerging advances in imaging technologies, in vivo labeling, and data processing that offer the greatest potential for jointly deciphering the intricate cellular dynamics and the underlying molecular mechanisms. Our discussion of the emerging area of “image-omics” highlights both the challenges of data analysis and the promise of more fully embracing computation and data science for rapidly advancing our understanding of biology.


Sign in / Sign up

Export Citation Format

Share Document