Annual Review of Biomedical Data Science
Latest Publications


TOTAL DOCUMENTS

64
(FIVE YEARS 48)

H-INDEX

12
(FIVE YEARS 7)

Published By Annual Reviews

2574-3414, 2574-3414

2021 ◽  
Vol 4 (1) ◽  
pp. 369-391
Author(s):  
Lee Call ◽  
Stephen Nayfach ◽  
Nikos C. Kyrpides

Viruses are the most abundant biological entity on Earth, infect cellular organisms from all domains of life, and are central players in the global biosphere. Over the last century, the discovery and characterization of viruses have progressed steadily alongside much of modern biology. In terms of outright numbers of novel viruses discovered, however, the last few years have been by far the most transformative for the field. Advances in methods for identifying viral sequences in genomic and metagenomic datasets, coupled to the exponential growth of environmental sequencing, have greatly expanded the catalog of known viruses and fueled the tremendous growth of viral sequence databases. Development and implementation of new standards, along with careful study of the newly discovered viruses, have transformed and will continue to transform our understanding of microbial evolution, ecology, and biogeochemical cycles, leading to new biotechnological innovations across many diverse fields, including environmental, agricultural, and biomedical sciences.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-19
Author(s):  
Lisa Bastarache

Electronic health records (EHRs) are a rich source of data for researchers, but extracting meaningful information out of this highly complex data source is challenging. Phecodes represent one strategy for defining phenotypes for research using EHR data. They are a high-throughput phenotyping tool based on ICD (International Classification of Diseases) codes that can be used to rapidly define the case/control status of thousands of clinically meaningful diseases and conditions. Phecodes were originally developed to conduct phenome-wide association studies to scan for phenotypic associations with common genetic variants. Since then, phecodes have been used to support a wide range of EHR-based phenotyping methods, including the phenotype risk score. This review aims to comprehensively describe the development, validation, and applications of phecodes and suggest some future directions for phecodes and high-throughput phenotyping.


2021 ◽  
Vol 4 (1) ◽  
pp. 57-81
Author(s):  
Nicola Mulder ◽  
Lyndon Zass ◽  
Yosr Hamdi ◽  
Houcemeddine Othman ◽  
Sumir Panji ◽  
...  

African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.


2021 ◽  
Vol 4 (1) ◽  
pp. 145-164
Author(s):  
Sandra Soo-Jin Lee

The collection and use of human genetic data raise important ethical questions about how to balance individual autonomy and privacy with the potential for public good. The proliferation of local, national, and international efforts to collect genetic data and create linkages to support large-scale initiatives in precision medicine and the learning health system creates new demands for broad data sharing that involve managing competing interests and careful consideration of what constitutes appropriate ethical trade-offs. This review describes these emerging ethical issues with a focus on approaches to consent and issues related to justice in the shifting genomic research ecosystem.


2021 ◽  
Vol 4 (1) ◽  
pp. 255-277
Author(s):  
Xinyue Zhang ◽  
Peng Gao ◽  
Michael P. Snyder

Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.


Author(s):  
Tracey Holloway ◽  
Daegan Miller ◽  
Susan Anenberg ◽  
Minghui Diao ◽  
Bryan Duncan ◽  
...  

Data from satellite instruments provide estimates of gas and particle levels relevant to human health, even pollutants invisible to the human eye. However, the successful interpretation of satellite data requires an understanding of how satellites relate to other data sources, as well as factors affecting their application to health challenges. Drawing from the expertise and experience of the 2016–2020 NASA HAQAST (Health and Air Quality Applied Sciences Team), we present a review of satellite data for air quality and health applications. We include a discussion of satellite data for epidemiological studies and health impact assessments, as well as the use of satellite data to evaluate air quality trends, support air quality regulation, characterize smoke from wildfires, and quantify emission sources. The primary advantage of satellite data compared to in situ measurements, e.g., from air quality monitoring stations, is their spatial coverage. Satellite data can reveal where pollution levels are highest around the world, how levels have changed over daily to decadal periods, and where pollutants are transported from urban to global scales. To date, air quality and health applications have primarily utilized satellite observations and satellite-derived products relevant to near-surface particulate matter <2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2). Health and air quality communities have grown increasingly engaged in the use of satellite data, and this trend is expected to continue. From health researchers to air quality managers, and from global applications to community impacts, satellite data are transforming the way air pollution exposure is evaluated. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Irene Y. Chen ◽  
Shalmali Joshi ◽  
Marzyeh Ghassemi ◽  
Rajesh Ranganath

Machine learning can be used to make sense of healthcare data. Probabilistic machine learning models help provide a complete picture of observed data in healthcare. In this review, we examine how probabilistic machine learning can advance healthcare. We consider challenges in the predictive model building pipeline where probabilistic models can be beneficial, including calibration and missing data. Beyond predictive models, we also investigate the utility of probabilistic machine learning models in phenotyping, in generative models for clinical use cases, and in reinforcement learning. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Bethany Percha

Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. However, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has advanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new methods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g., physician researchers, operational analytics teams, machine learning scientists from other domains). While not a comprehensive survey, this review describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable technical advances and the practical realities of implementation in health systems and in industry. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Qingyu Chen ◽  
Robert Leaman ◽  
Alexis Allot ◽  
Ling Luo ◽  
Chih-Hsuan Wei ◽  
...  

The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)—the branch of artificial intelligence that interprets human language—can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
George-John Nychas ◽  
Emma Sims ◽  
Panagiotis Tsakanikas ◽  
Fady Mohareb

Food safety is one of the main challenges of the agri-food industry that is expected to be addressed in the current environment of tremendous technological progress, where consumers’ lifestyles and preferences are in a constant state of flux. Food chain transparency and trust are drivers for food integrity control and for improvements in efficiency and economic growth. Similarly, the circular economy has great potential to reduce wastage and improve the efficiency of operations in multi-stakeholder ecosystems. Throughout the food chain cycle, all food commodities are exposed to multiple hazards, resulting in a high likelihood of contamination. Such biological or chemical hazards may be naturally present at any stage of food production, whether accidentally introduced or fraudulently imposed, risking consumers’ health and their faith in the food industry. Nowadays, a massive amount of data is generated, not only from the next generation of food safety monitoring systems and along the entire food chain (primary production included) but also from the internet of things, media, and other devices. These data should be used for the benefit of society, and the scientific field of data science should be a vital player in helping to make this possible. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document