The effect of normothermic cardiopulmonary bypass on hepatic blood flow in the dog

Perfusion ◽  
1986 ◽  
Vol 1 (4) ◽  
pp. 245-253 ◽  
Author(s):  
RT Mathie ◽  
JB Desai ◽  
KM Taylor

Hepatic blood flow was investigated in two groups of eight anaesthetized dogs during and after one hour of either pulsatile or non-pulsatile cardiopulmonary bypass (CPB). Mean perfusion pressure was maintained at 60 mmHg. Hepatic arterial (HA) and portal venous (PV) blood flows were measured using electromagnetic flow probes, and hepatic O 2 consumption determined. The results demonstrate that: (a) pulsatile CPB reduces peripheral vascular resistance during and after perfusion, and more effectively preserves pump flow rate and cardiac output than non-pulsatile CPB; (b) total liver blood flow is sustained more effectively by pulsatile CPB than by non-pulsatile CPB due to relative preservation of both HA and PV flows; (c) hepatic O2 consumption is only marginally better preserved during and after pulsatile CPB than with non-pulsatile perfusion. We conclude that: (a) pulsatile CPB tends to maintain hepatic blood flow through a relative reduction in HA vascular resistance and an improvement in PV flow produced passively by a greater pump flow rate; (b) pulsatile CPB less effectively benefits hepatic O2 consumption because of poor O2 uptake from the hepatic PV blood supply.

1990 ◽  
Vol 73 (3A) ◽  
pp. NA-NA
Author(s):  
F H Kem ◽  
W J Greeley ◽  
R M Ungerleider ◽  
T J Quill ◽  
B. Baldwin ◽  
...  

1997 ◽  
Vol 11 (4) ◽  
pp. 415-419 ◽  
Author(s):  
David J. Cook ◽  
Jacqueline A. Proper ◽  
Thomas A. Orszulak ◽  
Richard C. Daly ◽  
William C. Oliver

2007 ◽  
Vol 24 (Supplement 39) ◽  
pp. 53
Author(s):  
R. Valero ◽  
P. Santos-Cidón ◽  
M. Net ◽  
L I. Capdevila ◽  
J C. García-Valdecasas

ASAIO Journal ◽  
1993 ◽  
Vol 39 (2) ◽  
pp. 126-131
Author(s):  
Ryuji Tominaga ◽  
Kazuhiro Kurisu ◽  
Fumio Fukumura ◽  
Atsuhiro Nakashima ◽  
Manabu Hisahara ◽  
...  

2009 ◽  
Vol 24 (3) ◽  
pp. 245-249 ◽  
Author(s):  
Luisa Santambrogio ◽  
Cristian Leva ◽  
Giorgio Musazzi ◽  
Piergiorgio Bruno ◽  
Andrea Vailati ◽  
...  

1993 ◽  
Vol 56 (6) ◽  
pp. 1366-1372 ◽  
Author(s):  
Frank H. Kern ◽  
Ross M. Ungerleider ◽  
J.G. Reves ◽  
Timothy Quill ◽  
L.Richard Smith ◽  
...  

1996 ◽  
Vol 111 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Ryuji Tominaga ◽  
William Smith ◽  
Alex Massiello ◽  
Hiroaki Harasaki ◽  
Leonard A.R. Golding

1987 ◽  
Vol 65 (6) ◽  
pp. 1193-1199 ◽  
Author(s):  
C. V. Greenway ◽  
F. J. Burczynski

Hepatic galactose uptake in cats anesthetized with pentobarbital was determined during (i) steady-state infusions at several doses, (ii) rapidly increasing infusion rates at different blood flows, and (iii) prolonged infusion of a single dose at different blood flows. The hepatic venous long-circuit technique was used to allow frequent sampling of arterial, portal, and hepatic venous blood without depletion of the animal's blood volume and to allow measurement and alteration of total hepatic blood flow. Uptake was shown to follow Michaelis–Menten kinetics and was consistent with the "parallel tube model." The kinetic parameters Vmax and Kmax could be determined under steady-state and nonsteady-state conditions and were independent of hepatic blood flow over the range 60–150% of control flow. Mean Vmax was 80 μmol/(min∙100 g liver) and mean Km was 215 μM. Vmax declined by 50% when flow was reduced to half normal. It is concluded that the parallel tube model can be used to describe and predict hepatic galactose kinetics in anesthetized cats, although other models may fit the data equally well.


Sign in / Sign up

Export Citation Format

Share Document