Expected Value of Sample Information Calculations in Medical Decision Modeling

2004 ◽  
Vol 24 (2) ◽  
pp. 207-227 ◽  
Author(s):  
A. E. Ades ◽  
G. Lu ◽  
K. Claxton
2021 ◽  
pp. 0272989X2110262
Author(s):  
Anna Heath ◽  
Mark Strong ◽  
David Glynn ◽  
Natalia Kunst ◽  
Nicky J. Welton ◽  
...  

The expected value of sample information (EVSI) can be used to prioritize avenues for future research and design studies that support medical decision making and offer value for money spent. EVSI is calculated based on 3 key elements. Two of these, a probabilistic model-based economic evaluation and updating model uncertainty based on simulated data, have been frequently discussed in the literature. By contrast, the third element, simulating data from the proposed studies, has received little attention. This tutorial contributes to bridging this gap by providing a step-by-step guide to simulating study data for EVSI calculations. We discuss a general-purpose algorithm for simulating data and demonstrate its use to simulate 3 different outcome types. We then discuss how to induce correlations in the generated data, how to adjust for common issues in study implementation such as missingness and censoring, and how individual patient data from previous studies can be leveraged to undertake EVSI calculations. For all examples, we provide comprehensive code written in the R language and, where possible, Excel spreadsheets in the supplementary materials. This tutorial facilitates practical EVSI calculations and allows EVSI to be used to prioritize research and design studies.


2019 ◽  
Vol 39 (4) ◽  
pp. 347-359 ◽  
Author(s):  
Anna Heath ◽  
Ioanna Manolopoulou ◽  
Gianluca Baio

Background. The expected value of sample information (EVSI) determines the economic value of any future study with a specific design aimed at reducing uncertainty about the parameters underlying a health economic model. This has potential as a tool for trial design; the cost and value of different designs could be compared to find the trial with the greatest net benefit. However, despite recent developments, EVSI analysis can be slow, especially when optimizing over a large number of different designs. Methods. This article develops a method to reduce the computation time required to calculate the EVSI across different sample sizes. Our method extends the moment-matching approach to EVSI estimation to optimize over different sample sizes for the underlying trial while retaining a similar computational cost to a single EVSI estimate. This extension calculates the posterior variance of the net monetary benefit across alternative sample sizes and then uses Bayesian nonlinear regression to estimate the EVSI across these sample sizes. Results. A health economic model developed to assess the cost-effectiveness of interventions for chronic pain demonstrates that this EVSI calculation method is fast and accurate for realistic models. This example also highlights how different trial designs can be compared using the EVSI. Conclusion. The proposed estimation method is fast and accurate when calculating the EVSI across different sample sizes. This will allow researchers to realize the potential of using the EVSI to determine an economically optimal trial design for reducing uncertainty in health economic models. Limitations. Our method involves rerunning the health economic model, which can be more computationally expensive than some recent alternatives, especially in complex models.


2011 ◽  
Vol 31 (6) ◽  
pp. 839-852 ◽  
Author(s):  
Samer A. Kharroubi ◽  
Alan Brennan ◽  
Mark Strong

Expected value of sample information (EVSI) involves simulating data collection, Bayesian updating, and reexamining decisions. Bayesian updating in incomplete data models typically requires Markov chain Monte Carlo (MCMC). This article describes a revision to a form of Bayesian Laplace approximation for EVSI computation to support decisions in incomplete data models. The authors develop the approximation, setting out the mathematics for the likelihood and log posterior density function, which are necessary for the method. They compare the accuracy of EVSI estimates in a case study cost-effectiveness model using first- and second-order versions of their approximation formula and traditional Monte Carlo. Computational efficiency gains depend on the complexity of the net benefit functions, the number of inner-level Monte Carlo samples used, and the requirement or otherwise for MCMC methods to produce the posterior distributions. This methodology provides a new and valuable approach for EVSI computation in health economic decision models and potential wider benefits in many fields requiring Bayesian approximation.


2016 ◽  
Vol 36 (3) ◽  
pp. 282-283 ◽  
Author(s):  
Simon Eckermann ◽  
Andrew R. Willan

2017 ◽  
Vol 37 (5) ◽  
pp. 523-533 ◽  
Author(s):  
Sabine E. Grimm ◽  
Simon Dixon ◽  
John W. Stevens

Background. With low implementation of cost-effective health technologies being a problem in many health systems, it is worth considering the potential effects of research on implementation at the time of health technology assessment. Meaningful and realistic implementation estimates must be of dynamic nature. Objective. To extend existing methods for assessing the value of research studies in terms of both reduction of uncertainty and improvement in implementation by considering diffusion based on expert beliefs with and without further research conditional on the strength of evidence. Methods. We use expected value of sample information and expected value of specific implementation measure concepts accounting for the effects of specific research studies on implementation and the reduction of uncertainty. Diffusion theory and elicitation of expert beliefs about the shape of diffusion curves inform implementation dynamics. We illustrate use of the resulting dynamic expected value of research in a preterm birth screening technology and results are compared with those from a static analysis. Results. Allowing for diffusion based on expert beliefs had a significant impact on the expected value of research in the case study, suggesting that mistakes are made where static implementation levels are assumed. Incorporating the effects of research on implementation resulted in an increase in the expected value of research compared to the expected value of sample information alone. Conclusions. Assessing the expected value of research in reducing uncertainty and improving implementation dynamics has the potential to complement currently used analyses in health technology assessments, especially in recommendations for further research. The combination of expected value of research, diffusion theory, and elicitation described in this article is an important addition to the existing methods of health technology assessment.


2021 ◽  
pp. 0272989X2110680
Author(s):  
Mathyn Vervaart ◽  
Mark Strong ◽  
Karl P. Claxton ◽  
Nicky J. Welton ◽  
Torbjørn Wisløff ◽  
...  

Background Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we develop new methods for computing the EVSI of extending an existing trial’s follow-up, first for an assumed survival model and then extending to capture uncertainty about the true survival model. Methods We developed a nested Markov Chain Monte Carlo procedure and a nonparametric regression-based method. We compared the methods by computing single-model and model-averaged EVSI for collecting additional follow-up data in 2 synthetic case studies. Results There was good agreement between the 2 methods. The regression-based method was fast and straightforward to implement, and scales easily included any number of candidate survival models in the model uncertainty case. The nested Monte Carlo procedure, on the other hand, was extremely computationally demanding when we included model uncertainty. Conclusions We present a straightforward regression-based method for computing the EVSI of extending an existing trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. EVSI for ongoing trials can help decision makers determine whether early patient access to a new technology can be justified on the basis of the current evidence or whether more mature evidence is needed. Highlights Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life-expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we have developed new methods for computing the EVSI of extending a trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. We extend a previously described nonparametric regression-based method for computing EVSI, which we demonstrate in synthetic case studies is fast, straightforward to implement, and scales easily to include any number of candidate survival models in the EVSI calculations. The EVSI methods that we present in this article can quantify the need for collecting additional follow-up data before making an adoption decision given any decision-making context.


Sign in / Sign up

Export Citation Format

Share Document