Semi-infinite programming for trajectory optimization with non-convex obstacles

2021 ◽  
pp. 027836492098335
Author(s):  
Kris Hauser

This article presents a novel optimization method that handles collision constraints with complex, non-convex 3D geometries. The optimization problem is cast as a semi-infinite program in which each collision constraint is implicitly treated as an infinite number of numeric constraints. The approach progressively generates some of these constraints for inclusion in a finite nonlinear program. Constraint generation uses an oracle to detect points of deepest penetration, and this oracle is implemented efficiently via signed distance field (SDF) versus point cloud collision detection. This approach is applied to pose optimization and trajectory optimization for both free-flying rigid bodies and articulated robots. Experiments demonstrate performance improvements compared with optimizers that handle only convex polyhedra, and demonstrate efficient collision avoidance between non-convex CAD models and point clouds in a variety of pose and trajectory optimization settings.

2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


Author(s):  
Ghazanfar Ali Shah ◽  
Jean-Philippe Pernot ◽  
Arnaud Polette ◽  
Franca Giannini ◽  
Marina Monti

Abstract This paper introduces a novel reverse engineering technique for the reconstruction of editable CAD models of mechanical parts' assemblies. The input is a point cloud of a mechanical parts' assembly that has been acquired as a whole, i.e. without disassembling it prior to its digitization. The proposed framework allows for the reconstruction of the parametric CAD assembly model through a multi-step reconstruction and fitting approach. It is modular and it supports various exploitation scenarios depending on the available data and starting point. It also handles incomplete datasets. The reconstruction process starts from roughly sketched and parameterized geometries (i.e 2D sketches, 3D parts or assemblies) that are then used as input of a simulated annealing-based fitting algorithm, which minimizes the deviation between the point cloud and the reconstructed geometries. The coherence of the CAD models is maintained by a CAD modeler that performs the updates and satisfies the geometric constraints as the fitting process goes on. The optimization process leverages a two-level filtering technique able to capture and manage the boundaries of the geometries inside the overall point cloud in order to allow for local fitting and interfaces detection. It is a user-driven approach where the user decides what are the most suitable steps and sequence to operate. It has been tested and validated on both real scanned point clouds and as-scanned virtually generated point clouds incorporating several artifacts that would appear with real acquisition devices.


2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


Author(s):  
Yu Wu ◽  
Ning Hu ◽  
Xiangju Qu

Enhancing operation efficiency of flight deck has become a hotspot because it has an important impact on the fighting capacity of the carrier–aircraft system. To improve the operation efficiency, aircraft need taxi to the destination on deck with the optimal trajectory. In this paper, a general method is proposed to solve the trajectory optimization problem for aircraft taxiing on flight deck considering that the existing methods can only deal with the problem in some specific cases. Firstly, the ground motion model of aircraft, the collision detection strategy and the constraints are included in the mathematical model. Then the principles of the chicken swarm optimization algorithm and the generality of the proposed method are explained. In the trajectory optimization algorithm, several strategies, i.e. generation of collocation points, transformation of control variable, and setting of segmented fitness function, are developed to meet the terminal constraints easier and make the search efficient. Three groups of experiments with different environments are conducted. Aircraft with different initial states can reach the targets with the minimum taxiing time, and the taxiing trajectories meet all the constraints. The reason why the general trajectory optimization method is validated in all kinds of situations is also explained.


2018 ◽  
Vol 189 ◽  
pp. 10019
Author(s):  
Hao Li ◽  
Changzhu Wei

A trajectory optimization method for RLV based on artificial memory principles is proposed. Firstly the optimization problem is modelled in Euclidean space. Then in order to solve the complicated optimization problem of RLV in entry phase, Artificial-memory-principle optimization (AMPO) is introduced. AMPO is inspired by memory principles, in which a memory cell consists the whole information of an alternative solution. The information includes solution state and memory state. The former is an evolutional alternative solution, the latter indicates the state type of memory cell: temporary, short-and long-term. In the evolution of optimization, AMPO makes a various search (stimulus) to ensure adaptability, if the stimulus is good, memory state will turn temporary to short-term, even long-term, otherwise it not. Finally, simulation of different methods is carried out respectively. Results show that the method based on AMPO has better performance and high convergence speed when solving complicated optimization problems of RLV.


2020 ◽  
Author(s):  
Li Lu ◽  
Jian Liu ◽  
Jiadi Yu ◽  
Yingying Chen ◽  
Yanmin Zhu ◽  
...  

Abstract Human–computer interaction through touch screens plays an increasingly important role in our daily lives. Besides smartphones and tablets, laptops are the most prevalent mobile devices for both work and leisure. To satisfy the requirements of some applications, it is desirable to re-equip a typical laptop with both handwriting and drawing capability. In this paper, we design a virtual writing tablet system, VPad, for traditional laptops without touch screens. VPad leverages two speakers and one microphone, which are available in most commodity laptops, to accurately track hand movements and recognize writing characters in the air without additional hardware. Specifically, VPad emits inaudible acoustic signals from two speakers in a laptop and then analyzes energy features and Doppler shifts of acoustic signals received by the microphone to track the trajectory of hand movements. Furthermore, we propose a state machine-based trajectory optimization method to correct the unexpected trajectory and employ a stroke direction sequence model based on probability estimation to recognize characters users write in the air. Experimental results show that VPad achieves the average error of 1.55 cm for trajectory tracking and the accuracy over 90% of character recognition merely through built-in audio devices on a laptop.


Sign in / Sign up

Export Citation Format

Share Document