Midcourse trajectory optimization method with strong velocity constraint for hypersonic target interceptor

Author(s):  
Zhang Danxu ◽  
Fang Yangwang ◽  
Yang Pengfei
2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


Author(s):  
Yu Wu ◽  
Ning Hu ◽  
Xiangju Qu

Enhancing operation efficiency of flight deck has become a hotspot because it has an important impact on the fighting capacity of the carrier–aircraft system. To improve the operation efficiency, aircraft need taxi to the destination on deck with the optimal trajectory. In this paper, a general method is proposed to solve the trajectory optimization problem for aircraft taxiing on flight deck considering that the existing methods can only deal with the problem in some specific cases. Firstly, the ground motion model of aircraft, the collision detection strategy and the constraints are included in the mathematical model. Then the principles of the chicken swarm optimization algorithm and the generality of the proposed method are explained. In the trajectory optimization algorithm, several strategies, i.e. generation of collocation points, transformation of control variable, and setting of segmented fitness function, are developed to meet the terminal constraints easier and make the search efficient. Three groups of experiments with different environments are conducted. Aircraft with different initial states can reach the targets with the minimum taxiing time, and the taxiing trajectories meet all the constraints. The reason why the general trajectory optimization method is validated in all kinds of situations is also explained.


2018 ◽  
Vol 189 ◽  
pp. 10019
Author(s):  
Hao Li ◽  
Changzhu Wei

A trajectory optimization method for RLV based on artificial memory principles is proposed. Firstly the optimization problem is modelled in Euclidean space. Then in order to solve the complicated optimization problem of RLV in entry phase, Artificial-memory-principle optimization (AMPO) is introduced. AMPO is inspired by memory principles, in which a memory cell consists the whole information of an alternative solution. The information includes solution state and memory state. The former is an evolutional alternative solution, the latter indicates the state type of memory cell: temporary, short-and long-term. In the evolution of optimization, AMPO makes a various search (stimulus) to ensure adaptability, if the stimulus is good, memory state will turn temporary to short-term, even long-term, otherwise it not. Finally, simulation of different methods is carried out respectively. Results show that the method based on AMPO has better performance and high convergence speed when solving complicated optimization problems of RLV.


2020 ◽  
Author(s):  
Li Lu ◽  
Jian Liu ◽  
Jiadi Yu ◽  
Yingying Chen ◽  
Yanmin Zhu ◽  
...  

Abstract Human–computer interaction through touch screens plays an increasingly important role in our daily lives. Besides smartphones and tablets, laptops are the most prevalent mobile devices for both work and leisure. To satisfy the requirements of some applications, it is desirable to re-equip a typical laptop with both handwriting and drawing capability. In this paper, we design a virtual writing tablet system, VPad, for traditional laptops without touch screens. VPad leverages two speakers and one microphone, which are available in most commodity laptops, to accurately track hand movements and recognize writing characters in the air without additional hardware. Specifically, VPad emits inaudible acoustic signals from two speakers in a laptop and then analyzes energy features and Doppler shifts of acoustic signals received by the microphone to track the trajectory of hand movements. Furthermore, we propose a state machine-based trajectory optimization method to correct the unexpected trajectory and employ a stroke direction sequence model based on probability estimation to recognize characters users write in the air. Experimental results show that VPad achieves the average error of 1.55 cm for trajectory tracking and the accuracy over 90% of character recognition merely through built-in audio devices on a laptop.


Sign in / Sign up

Export Citation Format

Share Document