Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T

2017 ◽  
Vol 58 (11) ◽  
pp. 1386-1394 ◽  
Author(s):  
Amber L Pokorney ◽  
Jonathan M Chia ◽  
Cory M Pfeifer ◽  
Jeffrey H Miller ◽  
Houchun H Hu

Background Robust fat suppression remains essential in clinical MRI to improve tissue signal contrast, minimize fat-related artifacts, and enhance image quality. Purpose To compare fat suppression between mDIXON turbo spin echo (TSE) and conventional frequency-selective and inversion-recovery methods in pediatric spine MRI. Material and Methods Images from T1-weighted (T1W) and T2-weighted (T2W) TSE sequences coupled with conventional methods and the mDIXON technique were compared in 36 patients (5.8 ± 5.4 years) at 3.0 T. Images from 42 pairs of T1W (n = 16) and T2W (n = 26) scans were acquired. Two radiologists reviewed the data and rated images using a three-point scale in two categories, including the uniformity of fat suppression and overall diagnostic image quality. The Wilcoxon rank-sum test was used to compare the scores. Results The Cohen’s kappa coefficient for inter-rater agreement was 0.69 (95% confidence interval [CI], 0.56–0.83). Images from mDIXON TSE were considered superior in fat suppression ( P < 0.01) in 22 (rater 1) and 25 (rater 2) cases, respectively. In 13 (rater 1) and 11 (rater 2) cases, mDIXON TSE demonstrated improved diagnostic image quality ( P < 0.01). In three cases, fat suppression was superior using inversion-recovery and likewise in one case mDIXON had poorer image diagnostic quality. Lastly, mDIXON and conventional fat-suppression methods performed similarly in 17 (rater 1) and 14 (rater 2) cases, and yielded equal diagnostic image quality in 28 (rater 1) and 30 (rater 2) cases. Conclusion Robust fat suppression can be achieved with mDixon TSE pediatric spine imaging at 3.0 T and should be considered as a permanent replacement of traditional methods, in particular frequency-selective techniques.

2020 ◽  
pp. 028418512092456
Author(s):  
Jingjing Liu ◽  
Hang Jin ◽  
Yinyin Chen ◽  
Caixia Fu ◽  
Caizhong Chen ◽  
...  

Background Cardiac magnetic resonance (MR) has become an essential diagnostic imaging modality in cardiovascular disease. However, the insufficient image quality of traditional breath-hold (BH) T2-weighted (T2W) imaging may compromise its diagnostic accuracy. Purpose To assess the efficacy of the BLADE technique to reduce motion artifacts and improve the image quality. Material and Methods Free-breathing TSE-T2W imaging sequence with cartesian and BLADE k-space trajectory were acquired in 20 patients. Thirty patients underwent conventional BH turbo spin-echo (TSE) T2W imaging and free-breathing BLADE T2W (FB BLADE-T2W) imaging. Twenty-one patients who had a signal loss of myocardium in BH short-axis T2W turbo inversion recovery (TSE-T2W-TIR) were scanned using free-breathing BLADE T2W turbo inversion recovery (BLADE TSE-T2W-TIR). The overall image quality, blood nulling, and visualization of the heart were scored on a 5-point Likert scale. The signal loss of myocardium, incomplete fat suppression near the myocardium, and the streaking or ghosting artifacts were noted in T2W-TIR sequences additionally. Results The overall imaging quality, blood nulling, and the visualization of heart structure of FB BLADE-T2W imaging sequence were significantly better than those of FB T2W imaging with Cartesian k-space trajectory and BH TSE-T2W imaging sequence ( P<0.01). The FB BLADE TSE-T2W-TIR reduces the myocardium signal dropout ( P<0.05), incomplete fat suppression near myocardium ( P<0.05), and the streaking and ghosting artifacts ( P<0.05) in comparison with the BH TSE-T2W-TIR. Conclusions FB BLADE T2W imaging provides improved myocardial visibility, less motion sensitivity, and better image quality. It may be applied in patients who have poor breath-holding capability.


2015 ◽  
Vol 33 (9) ◽  
pp. 585-590 ◽  
Author(s):  
Lin Zhang ◽  
ChunMei Tian ◽  
PeiYuan Wang ◽  
Liang Chen ◽  
XiJin Mao ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199473
Author(s):  
Takeshi Yoshizako ◽  
Rika Yoshida ◽  
Hiroya Asou ◽  
Megumi Nakamura ◽  
Hajime Kitagaki

Background Echo-planar imaging (EPI)-diffusion-weighted imaging (DWI) may take unclear image affected by susceptibility, geometric distortions and chemical shift artifacts. Purpose To compare the image quality and usefulness of EPI-DWI and turbo spin echo (TSE)-DWI in female patients who required imaging of the pelvis. Material and Methods All 57 patients were examined with a 3.0-T MR scanner. Both TSE- and EPI-DWI were performed with b values of 0 and 1000 s/mm2. We compared geometric distortion, the contrast ratio (CR) of the myometrium to the muscle and the apparent diffusion coefficient (ADC) values for the myometrium and lesion. Two radiologists scored the TSE- and EPI-DWI of each patient for qualitative evaluation. Results The mean percent distortion was significantly smaller with TSE- than EPI-DWI ( p = 0.00). The CR was significantly higher with TSE- than EPI-DWI ( p = 0.003). There was a significant difference in the ADC value for the uterus and lesions between the EPI- and TSE-DWI ( p < 0.05). Finally, the ADC values of cancer were significantly different from those for the uterus and benign with both the two sequences ( p < 0.05). The scores for ghosting artifacts were higher with TSE- than EPI-DWI ( p = 0.019). But there were no significant differences between TSE- and EPI-DWI with regard to image contrast and overall image quality. Conclusion TSE-DWI on the female pelvis by 3T MRI produces less distortion and higher CR than EPI-DWI, but there is no difference in contrast and image quality.


2020 ◽  
Vol 61 (10) ◽  
pp. 1406-1413
Author(s):  
Kyu Sung Choi ◽  
Young Hun Choi ◽  
Jung-Eun Cheon ◽  
Woo Sun Kim ◽  
In One Kim

Background The image quality of abdominal magnetic resonance imaging (MRI) in children who cannot hold their breath has been severely impaired by motion artifacts. Purpose To evaluate the usefulness of T1-weighted (T1W) BLADE MRI for axial abdominal imaging in children who cannot hold their breath. Material and Methods Two different BLADE sequences, with and without an inversion recovery (IR-BLADE), were compared to conventional turbo-spin echo (TSE) with a high number of excitations in 18 consecutive patients who cannot hold their breath. Overall image quality, motion artifact, radial artifact, hepatic vessel sharpness, renal corticomedullary differentiation, and lesion conspicuity were retrospectively assessed by two radiologists, using 4- or 5-point scoring systems. Signal variations of each sequence were measured for a quantitative comparison. The acquisition times of the three sequences were compared. Results IR-BLADE and BLADE showed significantly improved overall image quality and reduced motion artifact compared with TSE. IR-BLADE showed significantly better hepatic vessel sharpness and corticomedullary differentiation compared to both BLADE and TSE. Radial artifacts were only observed on IR-BLADE and BLADE. In nine patients with lesions, there were no significant differences in lesion conspicuity among three sequences. Compared to TSE, both IR-BLADE and BLADE showed decreased signal variations in the liver and muscle, and an increased signal variation through air. The mean acquisition times for IR-BLADE, BLADE, and TSE were comparable. Conclusion Compared to the TSE sequence, T1W IR-BLADE for pediatric abdominal MRI resulted in improved image quality, tissue contrast with a diminished respiratory motion artifact, and a comparable acquisition time.


2015 ◽  
Vol 56 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Sungwon Lee ◽  
Won-Hee Jee ◽  
Joon-Yong Jung ◽  
So-Yeon Lee ◽  
Kyeung-Sik Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document