inversion time
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Francesco Sanvito ◽  
Fulvia Palesi ◽  
Elisa Rognone ◽  
Leonardo Barzaghi ◽  
Ludovica Pasca ◽  
...  

Abstract Objective Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL). Materials and methods Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed. Results CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection. Conclusions TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas.


2021 ◽  
Author(s):  
Steve C.N. Hui ◽  
Tao Gong ◽  
Helge J. Zöllner ◽  
Yulu Song ◽  
Saipavitra Murali-Manohar ◽  
...  

AbstractPurposeMobile macromolecules (MMs) from amino acids, cytosolic proteins and mobile lipids contribute a significant spectral background underlying the metabolite signals in the MR spectrum. A recent consensus recommends that MM contributions should be removed or included in modeling basis sets for determination of metabolite concentrations and/or metabolite ratios. The purpose of this study was to acquire the MM spectrum from healthy participants at a range of ages, and to investigate changes in the signals with age and sex groups.MethodsInversion time (TI) series were acquired to determine an optimal inversion time to null the metabolite signals. Experiments were carried out using a single adiabatic hyperbolic-secant inversion pulse. After the preliminary experiment, 102 volunteers (49M/53F) between 20 and 69 years were recruited for in vivo data acquisition in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). The protocol consisted of a T1-weighted MPRAGE for structural images, followed by PRESS localization using a voxel size of 30 × 26 × 26 mm3 with pre-inversion (TR/TI 2000/600 ms) and CHESS water suppression. Metabolite-nulled spectra were modeled using a reduced basis set (NAA, Cr, Cho, Glu) and a flexible spline baseline (0.1 ppm knot spacing) followed by subtraction of the modeled metabolite signals to yield a ‘clean’ MM spectrum, using the Osprey software. Pearson’s correlation coefficient was calculated between integrals and age for the 14 MM signals between 0.9–4.2 ppm. One-way ANOVA was performed to determine differences between age groups. An independent t-test was carried out to determine differences between sexes. Relationships between brain tissues with age and sex groups were also measured.ResultsMM spectra were successfully acquired in 99 (CSO) and 96 (PCC) of 102 subjects. No significant correlations were seen between age and MM integrals. One-way ANOVA also suggested no age-group differences for any MM peak (all p > 0.004). No differences were observed between sex groups. The voxels were segmented as 80 ± 4% white matter, 18 ± 4% gray matter, and 2 ± 1% CSF for CSO and 28 ± 4% white matter, 61 ± 4% gray matter and 11 ± 1% CSF for PCC. WM and GM showed a significant (p < 0.05) negative linear association with age in the WM-predominant CSO (R = −0.29) and GM-predominant PCC regions (R = −0.57) respectively while CSF increased significantly with age in both regions.ConclusionOur findings indicate that the MM spectrum is stable across a large age range and between sexes, suggesting a pre-defined MM basis function can be used for linear combination modeling of metabolite data from different age and sex groups.HighlightsA large publicly available MM-aging dataset is presented.Macromolecule signals do not change with age between 20 and 70.There is no sex difference for macromolecule integrals.


Author(s):  
Jing Zou ◽  
Luguang Chen ◽  
Hongbin Li ◽  
Guoping Zhang ◽  
Ilmari Pyykkö ◽  
...  

Abstract Background It is still challenging to detect endolymphatic hydrops (EH) in patients with Meniere’s disease (MD) using MRI. The aim of the present study was to optimize a sensitive technique generating strong contrast enhancement from minimum gadolinium–diethylenetriamine pentaacetic acid (Gd–DTPA) while reliably detecting EH in the inner ear, including the apex. Materials and methods All imaging was performed using a 3.0 T MR system 24 h after intratympanic injection of low-dose Gd–DTPA. Heavily T2-weighted 3-dimensional fluid-attenuated inversion recovery reconstructed with magnitude and zero-filled interpolation (hT2W–FLAIR–ZFI) was optimized and validated in phantom studies and compared with medium inversion time inversion recovery imaging with magnitude reconstruction (MIIRMR). The following parameters were used in hT2W–FLAIR–ZFI: repetition time 14,000 ms, echo time 663 ms, inversion time 2900 ms, flip angle 120°, echo train length 271, and field of view 166 × 196 mm2. Results MRI obtained using hT2W–FLAIR–MZFI yielded high-quality images with sharper and smoother borders between the endolymph and perilymph and a higher signal intensity ratio and more homogenous perilymph enhancement than those generated with MIIRMR (p < 0.01). There were predominantly grade II EHs in the cochleae and grade III EHs in the vestibule in definite MD. EH was detected in the apex of 11/16 ipsilateral ears, 3/16 contralateral ears in unilateral definite MD and 3/6 ears in bilateral MD. Conclusions The novel hT2W–FLAIR–MZFI technique is sensitive and demonstrates strong and homogenous enhancement by minimum Gd–DTPA in the inner ear, including the apex, and yields high-quality images with sharp borders between the endolymph and perilymph.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Badr Bannan ◽  
Julien Aguet ◽  
Aswathy Vaikom House ◽  
Navjot Gill ◽  
Vivian P. Tassos ◽  
...  

Abstract Background Cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) requires identification of the normal myocardial nulling time using inversion time (TI)-scout imaging sequence. Although TI-scout images are not primarily used for myocardial assessment, they provide information regarding different signal recovery patterns of normal and abnormal myocardium facilitating identification of LGE in instances where standard LGE images alone are not diagnostic. We aimed to assess the diagnostic performance of TI-scout as compared to that of standard LGE images. Methods CMR studies with LGE imaging in 519 patients (345 males, 1–17 years) were reviewed to assess the diagnostic performance of LGE imaging in terms of the location of LGE and the pathologic entities. The diagnostic performance of the TI-scout and standard LGE imaging was classified into four categories: (1) equally diagnostic, (2) TI-scout superior to standard LGE, (3) standard LGE superior to TI-scout, and (4) complementary, by the consensus of the two observers. Results The study cohort consisted of 440 patients with negative LGE and 79 with evidence for LGE. For a negative diagnosis of LGE, TI-scout and standard LGE images were equally diagnostic in 75% of the cases and were complementary in 12%. For patients with LGE, TI-scout images were superior to standard LGE images in 52% of the cases and were complementary in 19%. The diagnostic performance of TI-scout images was superior to that of standard LGE images in all locations. TI-scout images were superior to standard LGE images in 11 of 12 (92%) cases with LGE involving the papillary muscles, in 7 /12 (58%) cases with subendocardial LGE, and in 4/7 (57%) cases with transmural LGE. TI-scout images were particularly useful assessing the presence and extent of LGE in hypertrophic cardiomyopathy (HCM). TI-scout was superior to standard LGE in 6/10 (60%) and was complementary in 3/10 (30%) of the positive cases with HCM. Conclusions TI-scout images enhance the diagnostic performance of LGE imaging in children.


2021 ◽  
Vol 10 ◽  
Author(s):  
Manabu Kinoshita ◽  
Hideyuki Arita ◽  
Masamichi Takahashi ◽  
Takehiro Uda ◽  
Junya Fukai ◽  
...  

The current research tested the hypothesis that inversion time (TI) shorter than 2,400 ms under 3T for FLAIR can improve the diagnostic accuracy of the T2-FLAIR mismatch sign for identifying IDHmt, non-CODEL astrocytomas. We prepared three different cohorts; 94 MRI from 76 IDHmt, non-CODEL Lower-grade gliomas (LrGGs), 33 MRI from 31 LrGG under the restriction of FLAIR being acquired with TI &lt; 2,400 ms for 3T or 2,016 ms for 1.5T, and 112 MRI from 112 patients from the TCIA/TCGA dataset for LrGG. The presence or absence of the “T2-FLAIR mismatch sign” was evaluated, and we compared diagnostic accuracies according to TI used for FLAIR acquisition. The T2-FLAIR mismatch sign was more frequently positive when TI was shorter than 2,400 ms under 3T for FLAIR acquisition (p = 0.0009, Fisher’s exact test). The T2-FLAIR mismatch sign was positive only for IDHmt, non-CODEL astrocytomas even if we confined the cohort with FLAIR acquired with shorter TI (p = 0.0001, Fisher’s exact test). TCIA/TCGA dataset validated that the sensitivity, specificity, PPV, and NPV of the T2-FLAIR mismatch sign to identify IDHmt, non-CODEL astrocytomas improved from 31, 90, 79, and 51% to 67, 94, 92, and 74%, respectively and the area under the curve of ROC improved from 0.63 to 0.87 when FLAIR was acquired with shorter TI. We revealed that TI for FLAIR impacts the T2-FLAIR mismatch sign’s diagnostic accuracy and that FLAIR scanned with TI &lt; 2,400 ms in 3T is necessary for LrGG imaging.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Robert J. Holtackers ◽  
Suzanne Gommers ◽  
Caroline M. Van De Heyning ◽  
Casper Mihl ◽  
Jouke Smink ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii149-ii149
Author(s):  
Manabu Kinoshita ◽  
Hideyuki Arita ◽  
Masamichi Takahashi ◽  
Takehiro Uda ◽  
Junya Fukai ◽  
...  

Abstract PURPOSE The current research tested the hypothesis that TI shorter than 2400 ms under 3T for FLAIR can improve the diagnostic accuracy of the T2-FLAIR mismatch sign for identifying IDHmt, non-CODEL astrocytomas. EXPERIMENTAL DESIGN We prepared three different cohorts; 94 MRI from 76 IDHmt, non-CODEL LrGGs, 33 MRI from 31 LrGG under the restriction of FLAIR being acquired with TI &lt; 2400 ms for 3T or 2016 ms for 1.5T, and 103 MRI from 103 patients from the TCIA/TCGA dataset for LrGG. The presence or absence of the “T2-FLAIR mismatch sign” was evaluated, and we compared diagnostic accuracies according to TI used for FLAIR acquisition. RESULTS The T2-FLAIR mismatch sign was more frequently positive when TI was shorter than 2400 ms under 3T for FLAIR acquisition (p = 0.0009, Fisher’s exact test). The T2-FLAIR mismatch sign was positive only for IDHmt, non-CODEL astrocytomas even if we confined the cohort with FLAIR acquired with shorter TI (p = 0.0001, Fisher’s exact test). TCIA/TCGA dataset validated that the sensitivity, specificity, PPV, and NPV of the T2-FLAIR mismatch sign to identify IDHmt, non-CODEL astrocytomas improved from 31%, 90%, 79%, and 51% to 67%, 94%, 92%, and 74%, respectively if we acquired FLAIR with TI shorter than 2400 ms. CONCLUSIONS We revealed that TI for FLAIR impacts diagnostic accuracy of the T2-FLAIR mismatch sign and that FLAIR scanned with TI &lt; 2400 ms in 3T is necessary for LrGG imaging.


Sign in / Sign up

Export Citation Format

Share Document