scholarly journals Infection With a Novel Rickettsiella Species in Emperor Scorpions (Pandinus imperator)

2020 ◽  
Vol 57 (6) ◽  
pp. 858-870
Author(s):  
Sushan Han ◽  
Aníbal G. Armién ◽  
Janet E. Hill ◽  
Champika Fernando ◽  
Dan S. Bradway ◽  
...  

Rickettsiella infection was diagnosed in 4 adult emperor scorpions ( Pandinus imperator) from 2 different collections over a 3-year period. One case had a 2-day history of weakness, failure to lift the tail, or respond to stimulation, with rapid progression to death. The other 3 cases were found dead. There were no gross lesions, but histologically the hemolymphatic vasculature and sinuses, presumed hematopoietic organ, heart, midgut and midgut diverticula, nerves, and skeletal muscle were infiltrated with phagocytic and granular hemocytes with necrosis. Phagocytic hemocytes contained abundant intracellular microorganisms that were Fite’s acid-fast-positive, Macchiavello-positive, variably gram-positive or gram-negative, and Grocott’s methenamine silver-negative. By transmission electron microscopy, hemocytes contained numerous phagocytic vacuoles with small dense bacterial forms (mean 0.603 × 0.163 μm) interspersed with large bacterial forms (mean 1.265 × 0.505 μm) and few intermediary forms with electron-dense nucleoids and membrane-bound crystalline arrays (average 4.72 μm). Transmission electron microscopy findings were consistent with bacteria of the family Coxiellaceae. Based on sequencing the 16S ribosomal RNA gene, the identity was confirmed as Rickettsiella, and phylogenetic analysis of protein-coding genes gidA, rspA, and sucB genes suggested the emperor scorpion pathogen as a new species. This study identifies a novel Rickettsiella causing infection in emperor scorpions and characterizes the unique pathological findings of this disease. We suggest this organism be provisionally named Rickettsiella scorpionisepticum.

1987 ◽  
Vol 1 (2) ◽  
pp. 322-329 ◽  
Author(s):  
H. Warshawsky

The purpose of this paper is to review evidence which casts doubt on the interpretation universally applied to hexagonal images seen in sectioned enamel. The evidence is based on two possible models to explain the hexagonal profiles seen in mammalian enamel with transmission electron microscopy. The "hexagonal ribbon" model proposes that hexagonal profiles are true cross-sections of elongated hexagonal ribbons. The "rectangular ribbon" model proposes that hexagonal profiles are caused by three-dimensional segments that are parallelepipeds contained in the Epon section. Since shadow projections of such rectangular segments give angles that are inconsistent with the hexagonal unit cell, a model based on ribbons with rhomboidal cut ends and angles of 60 and 120° is proposed. The "rhomboidal ribbon" model projects shadows with angles that are predicted by the unit cell. It is suggested that segments of such crystallites in section project as opaque hexagons on the imaging plane in routine transmission electron microscopy. Morphological observations on crystallites in sections - together with predictions from the hexagonal, rectangular, and rhomboidal ribbon models - indicate that crystallites in rat incisor enamel are flat ribbons with rhomboidal cross-sectional shape. Hexagonal images in electron micrographs of thin-sectioned enamel can result from rhomboidal-ended, parallelepiped-shaped segments of these crystallites projected and viewed as two-dimensional shadows.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2906-2906
Author(s):  
Jemimah Adams ◽  
R Gitendra Wickremasinghe ◽  
Archibald G Prentice ◽  
Jonathan C. Strefford ◽  
Andrew Duncombe ◽  
...  

Abstract Abstract 2906 Chronic Lymphocytic leukemia (CLL) is currently incurable using conventional therapies. CLL cells can evade killing by various therapeutic strategies. However the precise mechanisms are currently unknown. Autophagy is regulated by a complex system of proteins, and is used by both normal and malignant cells as a protective mechanism against cellular stress induced by starvation, hypoxia, reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. In malignant cells autophagy was shown to promote tumorigenesis and/or resistance to chemotherapy. Therefore we hypothesized that autophagy may play a role in CLL biology. Autophagy can also promote cell death when stress signals are elevated above a particular threshold for a prolonged period of time. In this study we investigated the basal expression levels of autophagy specific genes and the effect of autophagy specific inhibitors (Bafilomycin, 3-methyladenine and hydroxychloroquine) and inducers (Phenethyl isothiocyanate) on CLL survival. Phenethyl isothiocyanate (PEITC) is about to enter clinical trials for CLL (NCT00968461). We have investigated induction of components of the autophagic pathway following treatment of CLL cells in vitro with a range of chemical inhibitors. Immunoblotting was carried out to investigate components of the autophagy pathway using phosphorylation state-specific and pan-reactive antibodies. Bafilomycin (BAF), 3-methyladenine (3-MA) and hydroxychloroquine (HCQ) toxicity towards CLL samples were evaluated by Annexin V/PI staining, MTT assay and immunoblotting for cleavage of the caspase 3 substrate poly(ADP ribose) polymerase (PARP) from its 116KDa to its 85KDa form. PEITC was used at concentrations between 2.5 and 25μM to investigate its effect on signaling. Autophagy was quantitated by immunoblotting of LC3-I and LC3-II. Lipidation of LC3 from LC3-I to LC3-II is a surrogate marker of autophagy and is essential for autophagasome formation. Immunoblotting was also performed for ATG3, ATG5 and ATG7, key components of the autophagy pathway. Monodansylcadaverine (MDC) was used with immunofluorescence and FACS analysis to investigate increases in autophagasome formation. Transmission electron microscopy (TEM) was used to confirm double membrane bound autophagosomes. Co-immunoprecipitation was used to evaluate if Beclin-1 was sequestered by Bcl-2 preventing autophagy. Its release from Bcl-2 enables Beclin-1 to interact with other autophagy specific proteins and initiates autophagasome formation. LC3-I was lipidated to LC3-II (p=0.019) and ATG3 (p=0.021) was upregulated to a greater extent in CLL samples compared with normal B-cell controls at basal levels. This suggested that autophagy was active to a greater extent in CLL samples compared with normal individuals. In addition Beclin was dissociated from Bcl-2 in CLL samples indicating that autophagy was active. Autophagy appears to be a pro-survival mechanism in untreated CLL cells as inhibiting basal levels of autophagy with autophagy inhibitors BAF (50–200nM), 3-MA (5–10mM) and hydroxychlorquine (5–10μM) resulted in CLL apoptosis as shown by MTT, Annexin V/PI analysis and PARP cleavage. Interestingly augmenting autophagy was also capable of inducing apoptosis in CLL samples. Treatment with PEITC caused an increase in punctate staining using MDC which is suggestive of autophagosome formation. We went on to determine that PEITC further induced LC3-II lipidation using immunoblotting and showed a substantial increase in overall LC3 protein expression. PEITC also induced the expression of ATG3, a key protein in the autophagy pathway. We then evaluated autophagosome formation using TEM (Figure 1). Our data showed greater numbers of autophagosomes in the PEITC treated samples compared to the untreated controls. Therefore autophagy in CLL sits on a knife-edge, such that perturbations that either increase pro- death or decrease pro-survival autophagy signals can result in CLL cell death, depending on the duration and intensity of the signal. Figure 1. Transmission electron microscopy of CLL cells CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Figure 1. Transmission electron microscopy of CLL cells . / CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Martin D'A.A. Le Tissier

The skeleton and calicoblastic ectoderm of the scleractinian non-zooxanthellate coral Caryophyllia smithii were investigated by light microscopy, scanning and transmission electron microscopy. Except for some costal spines, the skeleton was fasciculate. Fasciculi were made up of bundles of crystalline needles, each crystalline needle consisting of a number of linear series of small (<1 μm) rounded crystals. Fractured skeletons showed the fasciculi to be arranged into layers and that within some septa, theca and costal spines there were spaces that contained neither mineral nor organic matter. These spaces could also be found at the growing edges of septa and theca. Demineralization of the skeleton revealed an organic matrix whose configuration mirrored the architecture of the skeleton. In areas of the skeleton where deposition was occurring the overlying calicoblastic ectoderm was relatively thin with prominent intercellular spaces and secretory vesicles. In contrast, over non-depositing areas the calicoblastic ectoderm was thick and contained residual bodies, nematocysts and membrane-bound granules. The results are compared and contrasted with those from scleractinian corals that have endosymbiotic zooxanthellae.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Pavel Vlasov ◽  
Sonia Q. Doi ◽  
Donald F. Sellitti

Exosomes are 30–100 nm, membrane-bound vesicles containing specific cellular proteins, mRNAs, and microRNAs that take part in intercellular communication between cells. A possible role for exosomes in thyroid function has not been fully explored. In the present study, FRTL-5 rat thyroid cells were grown to confluence and received medium containing either thyroid stimulating hormone (TSH), exogenous bovine thyroglobulin (bTg), or neither additive for 24 or 48 hours followed by collection of spent medium and ultracentrifugation to isolate small vesicles. Transmission electron microscopy and Western blotting for CD9 indicated the presence of exosomes. Western blotting of exosome extract using a monoclonal anti-Tg antibody revealed a Tg-positive band at ~330 kDa (the expected size of monomeric Tg) with a higher density in TSH-treated cells compared to that in untreated cells. These results are the first to show that normal thyroid cells in culture produce exosomes containing undegraded Tg.


Sign in / Sign up

Export Citation Format

Share Document