Phenethyl Isothiocyanate (PEITC) Regulates Autophagy in Chronic Lymphocytic Leukemia.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2906-2906
Author(s):  
Jemimah Adams ◽  
R Gitendra Wickremasinghe ◽  
Archibald G Prentice ◽  
Jonathan C. Strefford ◽  
Andrew Duncombe ◽  
...  

Abstract Abstract 2906 Chronic Lymphocytic leukemia (CLL) is currently incurable using conventional therapies. CLL cells can evade killing by various therapeutic strategies. However the precise mechanisms are currently unknown. Autophagy is regulated by a complex system of proteins, and is used by both normal and malignant cells as a protective mechanism against cellular stress induced by starvation, hypoxia, reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. In malignant cells autophagy was shown to promote tumorigenesis and/or resistance to chemotherapy. Therefore we hypothesized that autophagy may play a role in CLL biology. Autophagy can also promote cell death when stress signals are elevated above a particular threshold for a prolonged period of time. In this study we investigated the basal expression levels of autophagy specific genes and the effect of autophagy specific inhibitors (Bafilomycin, 3-methyladenine and hydroxychloroquine) and inducers (Phenethyl isothiocyanate) on CLL survival. Phenethyl isothiocyanate (PEITC) is about to enter clinical trials for CLL (NCT00968461). We have investigated induction of components of the autophagic pathway following treatment of CLL cells in vitro with a range of chemical inhibitors. Immunoblotting was carried out to investigate components of the autophagy pathway using phosphorylation state-specific and pan-reactive antibodies. Bafilomycin (BAF), 3-methyladenine (3-MA) and hydroxychloroquine (HCQ) toxicity towards CLL samples were evaluated by Annexin V/PI staining, MTT assay and immunoblotting for cleavage of the caspase 3 substrate poly(ADP ribose) polymerase (PARP) from its 116KDa to its 85KDa form. PEITC was used at concentrations between 2.5 and 25μM to investigate its effect on signaling. Autophagy was quantitated by immunoblotting of LC3-I and LC3-II. Lipidation of LC3 from LC3-I to LC3-II is a surrogate marker of autophagy and is essential for autophagasome formation. Immunoblotting was also performed for ATG3, ATG5 and ATG7, key components of the autophagy pathway. Monodansylcadaverine (MDC) was used with immunofluorescence and FACS analysis to investigate increases in autophagasome formation. Transmission electron microscopy (TEM) was used to confirm double membrane bound autophagosomes. Co-immunoprecipitation was used to evaluate if Beclin-1 was sequestered by Bcl-2 preventing autophagy. Its release from Bcl-2 enables Beclin-1 to interact with other autophagy specific proteins and initiates autophagasome formation. LC3-I was lipidated to LC3-II (p=0.019) and ATG3 (p=0.021) was upregulated to a greater extent in CLL samples compared with normal B-cell controls at basal levels. This suggested that autophagy was active to a greater extent in CLL samples compared with normal individuals. In addition Beclin was dissociated from Bcl-2 in CLL samples indicating that autophagy was active. Autophagy appears to be a pro-survival mechanism in untreated CLL cells as inhibiting basal levels of autophagy with autophagy inhibitors BAF (50–200nM), 3-MA (5–10mM) and hydroxychlorquine (5–10μM) resulted in CLL apoptosis as shown by MTT, Annexin V/PI analysis and PARP cleavage. Interestingly augmenting autophagy was also capable of inducing apoptosis in CLL samples. Treatment with PEITC caused an increase in punctate staining using MDC which is suggestive of autophagosome formation. We went on to determine that PEITC further induced LC3-II lipidation using immunoblotting and showed a substantial increase in overall LC3 protein expression. PEITC also induced the expression of ATG3, a key protein in the autophagy pathway. We then evaluated autophagosome formation using TEM (Figure 1). Our data showed greater numbers of autophagosomes in the PEITC treated samples compared to the untreated controls. Therefore autophagy in CLL sits on a knife-edge, such that perturbations that either increase pro- death or decrease pro-survival autophagy signals can result in CLL cell death, depending on the duration and intensity of the signal. Figure 1. Transmission electron microscopy of CLL cells CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Figure 1. Transmission electron microscopy of CLL cells . / CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 57 (6) ◽  
pp. 858-870
Author(s):  
Sushan Han ◽  
Aníbal G. Armién ◽  
Janet E. Hill ◽  
Champika Fernando ◽  
Dan S. Bradway ◽  
...  

Rickettsiella infection was diagnosed in 4 adult emperor scorpions ( Pandinus imperator) from 2 different collections over a 3-year period. One case had a 2-day history of weakness, failure to lift the tail, or respond to stimulation, with rapid progression to death. The other 3 cases were found dead. There were no gross lesions, but histologically the hemolymphatic vasculature and sinuses, presumed hematopoietic organ, heart, midgut and midgut diverticula, nerves, and skeletal muscle were infiltrated with phagocytic and granular hemocytes with necrosis. Phagocytic hemocytes contained abundant intracellular microorganisms that were Fite’s acid-fast-positive, Macchiavello-positive, variably gram-positive or gram-negative, and Grocott’s methenamine silver-negative. By transmission electron microscopy, hemocytes contained numerous phagocytic vacuoles with small dense bacterial forms (mean 0.603 × 0.163 μm) interspersed with large bacterial forms (mean 1.265 × 0.505 μm) and few intermediary forms with electron-dense nucleoids and membrane-bound crystalline arrays (average 4.72 μm). Transmission electron microscopy findings were consistent with bacteria of the family Coxiellaceae. Based on sequencing the 16S ribosomal RNA gene, the identity was confirmed as Rickettsiella, and phylogenetic analysis of protein-coding genes gidA, rspA, and sucB genes suggested the emperor scorpion pathogen as a new species. This study identifies a novel Rickettsiella causing infection in emperor scorpions and characterizes the unique pathological findings of this disease. We suggest this organism be provisionally named Rickettsiella scorpionisepticum.


2015 ◽  
Vol 122 (6) ◽  
pp. 1349-1361 ◽  
Author(s):  
Ilan Azuelos ◽  
Boris Jung ◽  
Martin Picard ◽  
Feng Liang ◽  
Tong Li ◽  
...  

Abstract Background: Mechanical ventilation (MV) is associated with atrophy and weakness of the diaphragm muscle, a condition termed ventilator-induced diaphragmatic dysfunction (VIDD). Autophagy is a lysosomally mediated proteolytic process that can be activated by oxidative stress, which has the potential to either mitigate or exacerbate VIDD. The primary goals of this study were to (1) determine the effects of MV on autophagy in the diaphragm and (2) evaluate the impact of antioxidant therapy on autophagy induction and MV-induced diaphragmatic weakness. Methods: Mice were assigned to control (CTRL), MV (for 6 h), MV + N-acetylcysteine, MV + rapamycin, and prolonged (48 h) fasting groups. Autophagy was monitored by quantifying (1) autophagic vesicles by transmission electron microscopy, (2) messenger RNA levels of autophagy-related genes, and (3) the autophagosome marker protein LC3B-II, with and without administration of colchicine to calculate the indices of relative autophagosome formation and degradation. Force production by mouse diaphragms was determined ex vivo. Results: Diaphragms exhibited a 2.2-fold (95% CI, 1.8 to 2.5) increase in autophagic vesicles visualized by transmission electron microscopy relative to CTRL after 6 h of MV (n = 5 per group). The autophagosome formation index increased in the diaphragm alone (1.5-fold; 95% CI, 1.3 to 1.8; n = 8 per group) during MV, whereas prolonged fasting induced autophagosome formation in both the diaphragm (2.5-fold; 95% CI, 2.2 to 2.8) and the limb muscle (4.1-fold; 95% CI, 1.8 to 6.5). The antioxidant N-acetylcysteine further augmented the autophagosome formation in the diaphragm during MV (1.4-fold; 95% CI, 1.2 to 1.5; n = 8 per group) and prevented MV-induced diaphragmatic weakness. Treatment with the autophagy-inducing agent rapamycin also largely prevented the diaphragmatic force loss associated with MV (n = 6 per group). Conclusions: In this model of VIDD, autophagy is induced by MV but is not responsible for diaphragmatic weakness. The authors propose that autophagy may instead be a beneficial adaptive response that can potentially be exploited for therapy of VIDD.


Author(s):  
Martin D'A.A. Le Tissier

The skeleton and calicoblastic ectoderm of the scleractinian non-zooxanthellate coral Caryophyllia smithii were investigated by light microscopy, scanning and transmission electron microscopy. Except for some costal spines, the skeleton was fasciculate. Fasciculi were made up of bundles of crystalline needles, each crystalline needle consisting of a number of linear series of small (<1 μm) rounded crystals. Fractured skeletons showed the fasciculi to be arranged into layers and that within some septa, theca and costal spines there were spaces that contained neither mineral nor organic matter. These spaces could also be found at the growing edges of septa and theca. Demineralization of the skeleton revealed an organic matrix whose configuration mirrored the architecture of the skeleton. In areas of the skeleton where deposition was occurring the overlying calicoblastic ectoderm was relatively thin with prominent intercellular spaces and secretory vesicles. In contrast, over non-depositing areas the calicoblastic ectoderm was thick and contained residual bodies, nematocysts and membrane-bound granules. The results are compared and contrasted with those from scleractinian corals that have endosymbiotic zooxanthellae.


2020 ◽  
Author(s):  
Xiaolong Wang ◽  
Jianbo Li ◽  
Da Man ◽  
Rui Liu ◽  
Jianmin Zhao

Abstract Background At present, the early diagnosis of femoral head necrosis mainly relies on MRI, and most early patients are difficult to make an accurate diagnosis. Therefore, to investigate the early diagnostic value of 99mTc-Cys-Annexin V SPECT imaging were compared with MRI in rabbit models of steroid-induced femoral head necrosis. Methods The rabbit models of steroid-induced femoral head necrosis were established by intravenous injection of horse serum and gluteal muscle injection of methylprednisolone in of 5-month-old healthy New Zealand white rabbits. 99mTc-Cys-Annexin V SPECT imaging and MRI were performed at 2nd week, 4th week, and 6th week after modeling. After that, histopathology was used to verify the success of modeling. Apoptosis was detected by transmission electron microscopy and TUNEL. Results At 2 weeks after the injection of hormone, 99mTc-Cys-Annexin V SPECT image showed abnormal radioactive uptake in the bilateral femoral head. And over time, the radioactivity concentration was more obvious, and the ratio of T/NT (target tissue/non-target tissues) was gradually increased. In the SPECT imaging at each time point, T/NT ratio of the model group was significantly higher than that of the control group (P < 0.01); at 4 weeks after the injection of hormone, MRI showed an abnormal signal of osteonecrosis. At 2, 4, and 6 weeks after hormone injection, apoptosis was observed by TUNEL and transmission electron microscopy. Conclusions 99mTc-Cys-Annexin V SPECT imaging can diagnose steroid-induced femoral head necrosis earlier than MRI, and has potential application value for non-invasively detecting early and even ultra-early stage of femoral head necrosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Pavel Vlasov ◽  
Sonia Q. Doi ◽  
Donald F. Sellitti

Exosomes are 30–100 nm, membrane-bound vesicles containing specific cellular proteins, mRNAs, and microRNAs that take part in intercellular communication between cells. A possible role for exosomes in thyroid function has not been fully explored. In the present study, FRTL-5 rat thyroid cells were grown to confluence and received medium containing either thyroid stimulating hormone (TSH), exogenous bovine thyroglobulin (bTg), or neither additive for 24 or 48 hours followed by collection of spent medium and ultracentrifugation to isolate small vesicles. Transmission electron microscopy and Western blotting for CD9 indicated the presence of exosomes. Western blotting of exosome extract using a monoclonal anti-Tg antibody revealed a Tg-positive band at ~330 kDa (the expected size of monomeric Tg) with a higher density in TSH-treated cells compared to that in untreated cells. These results are the first to show that normal thyroid cells in culture produce exosomes containing undegraded Tg.


Author(s):  
K Sato ◽  
S Chitose ◽  
K Sato ◽  
F Sato ◽  
T Ono ◽  
...  

Abstract Objective Cells in the vocal fold of maculae flavae are likely to be tissue stem cells. Energy metabolism of the cells in newborn maculae flavae was investigated from the aspect of mitochondrial microstructure. Method Five normal newborn vocal folds were investigated under transmission electron microscopy. Results Mitochondria consisted of a double membrane bounded body containing matrices and a system of cristae. However, these membranes were ambiguous. In each mitochondrion, the lamellar cristae were sparse. Intercristal space was occupied by a mitochondrial matrix. Some mitochondria had fused to lipid droplets and rough endoplasmic reticulum, and both the mitochondrial outer and inner membranes had incarcerated and disappeared. Conclusion The features of the mitochondria of the cells in the newborn maculae flavae showed that their metabolic activity and oxidative phosphorylation were low. The metabolism of the cells in the newborn maculae flavae seems to be favourable to maintain the stemness and undifferentiation of the cells.


2020 ◽  
Author(s):  
Xiaolong Wang ◽  
Jianbo Li ◽  
Da Man ◽  
Rui Liu ◽  
Jianmin Zhao

Abstract Background At present, the early diagnosis of femoral head necrosis mainly relies on MRI, and most early patients are difficult to make an accurate diagnosis. Therefore, to investigate the early diagnostic value of 99mTc-Cys-Annexin V SPECT imaging were compared with MRI in rabbit models of steroid-induced femoral head necrosis. Methods The rabbit models of steroid-induced femoral head necrosis were established by intravenous injection of horse serum and gluteal muscle injection of methylprednisolone in of 5-month-old healthy New Zealand white rabbits. 99mTc-Cys-Annexin V SPECT imaging and MRI were performed at 2nd week, 4th week, and 6th week after modeling. After that, histopathology was used to verify the success of modeling. Apoptosis was detected by transmission electron microscopy and TUNEL. Results At 2 weeks after the injection of hormone, 99mTc-Cys-Annexin V SPECT image showed abnormal radioactive uptake in the bilateral femoral head. And over time, the radioactivity concentration was more obvious, and the ratio of T/NT (target tissue/non-target tissues) was gradually increased. In the SPECT imaging at each time point, T/NT ratio of the model group was significantly higher than that of the control group (P < 0.01); at 4 weeks after the injection of hormone, MRI showed an abnormal signal of osteonecrosis. At 2, 4, and 6 weeks after hormone injection, apoptosis was observed by TUNEL and transmission electron microscopy. Conclusion s 99mTc-Cys-Annexin V SPECT imaging can diagnose steroid-induced femoral head necrosis earlier than MRI, and has potential application value for non-invasively detecting early and even ultra-early stage of femoral head necrosis.


2017 ◽  
pp. 5
Author(s):  
Luis Felipe Jiménez-García ◽  
Rafael Reynoso-Robles ◽  
Rogelio Fragoso-Soriano ◽  
Lourdes Teresa Agredano-Moreno ◽  
María de Lourdes Segura-Valdez ◽  
...  

We have previously described the cell nucleus of Lacandonia schismatica by transmission electron microscopy. In this paper, the ultrastructure of the cytoplasm of L. schismatica and photosynthesis activity were studied. In addition, atomic force microscopy was used to generate images of cell structure. Samples were prepared for standard electron microscopy using glutaraldehyde-paraformaldehyde fixation. Cells from tegument or receptacle show 1-3 Golgi apparatus. They have 3-7 cisternae, 0.81 μm width. 0.04 μm in diameter vesicles were also observed associated to cisternae. Mitochondria were 0.9 μm long and 0.35 μm width. Double membrane earphones-like plastids were observed with lipid inclusions but no developed tilacoids. No photosynthesis activity was detected in these cellular structures. Rough endoplasmic reticulum is similar to that of other eukaryotes and associated ribosomes are around 15 nm in diameter. A large nucleus and one o several vacuoles are present in cells of L. schismatica, therefore, leaving a very restricted portion for cytoplasm and organelles.


Author(s):  
Karthryn M. Edson

Successful parasitism of a host by a parasitoid wasp may be aided by secretions from the venom apparatus, an accessory gland of the female parasitoid's reproductive system. In the present study, transmission electron microscopy of the venom apparatus of Meteorus leviventris reveals virus-like and membrane-bound particles which may influence successful parasitism of the host. This is the first evidence of such particles within the venom apparatus of a parasitoid.The venom apparatus of M. leviventris consists of a venom reservoir with two highly ramified gland filaments attached to it by a common duct.TEM of the secretory cells of the gland filaments reveals particles approximately 50 nm in diameter contained within a cytoplasmic stroma (Fig. 1). These virus-like particles (VLP) have a dense inner core and a hexagonal congifuration. Similar particles are found free within the cytoplasm or associated with vacuoles (Fig. 2).Secretory cells of the gland filaments contain a secretory apparatus which consists of an array of microvilli converging on a central lumen (Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document