scholarly journals Reducing medical device alarms by an order of magnitude: A human factors approach

2021 ◽  
Vol 49 (1) ◽  
pp. 52-61
Author(s):  
Erik Koomen ◽  
Craig S Webster ◽  
David Konrad ◽  
Johannes G van der Hoeven ◽  
Thomas Best ◽  
...  

The intensive care unit (ICU) is one of the most technically advanced environments in healthcare, using a multitude of medical devices for drug administration, mechanical ventilation and patient monitoring. However, these technologies currently come with disadvantages, namely noise pollution, information overload and alarm fatigue—all caused by too many alarms. Individual medical devices currently generate alarms independently, without any coordination or prioritisation with other devices, leading to a cacophony where important alarms can be lost amongst trivial ones, occasionally with serious or even fatal consequences for patients. We have called this approach to the design of medical devices the single-device paradigm, and believe it is obsolete in modern hospitals where patients are typically connected to several devices simultaneously. Alarm rates of one alarm every four minutes for only the physiological monitors (as recorded in the ICUs of two hospitals contributing to this paper) degrades the quality of the patient’s healing environment and threatens patient safety by constantly distracting healthcare professionals. We outline a new approach to medical device design involving the application of human factors principles which have been successful in eliminating alarm fatigue in commercial aviation. Our approach comprises the networked-device paradigm, comprehensive alarms and humaniform information displays. Instead of each medical device alarming separately at the patient’s bedside, our proposed approach will integrate, prioritise and optimise alarms across all devices attached to each patient, display information more intuitively and hence increase alarm quality while reducing the number of alarms by an order of magnitude below current levels.

2016 ◽  
Author(s):  
Kathrin Lange

The core tasks of the Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte [BfArM]) with respect to medical device safety include evaluating risks arising from the use or application of medical devices (based on incident reports), assessing and coordinating the counter-measures to be taken (i.e. corrective actions), and authorizing clinical trials of medical devices and evaluating the corresponding serious adverse events. Additionally, the BfArM also conducts research on medical device safety, specifically on the possibilities and challenges of data-driven approaches to detect and evaluate risk and on the contribution of human factors to device safety – i.e. factors that may have an impact on how users interact with a device. The present talk focuses on this latter issue. The significance of addressing human factors relating to the use of medical devices results from the contribution of human error to adverse events. For instance, an involvement of human error could be identified in a good 10% of the reports of suspected device-related incidents evaluated by the BfArM between 2005 and 2014. For several reasons, it may be assumed that the true value of device-related incidents involving human error is even larger and that the potential for human error is likely to increase in the future. To effectively reduce the risk for human error – or block its negative outcome - it is imperative to not only identify human error as a significant cause of adverse events, but rather understand the causation of the error, including the conditions under which errors are likely to occur. This requires the analysis of the perceptual, cognitive (e.g. attention, working memory, long term memory), motor or motivational processes involved and the identification of relevant factors at the various levels of the socio-technical system. In our research, we currently pursue two selected human factors issues, selected based on the incident-data collected at the BfArM and on the current literature: Insufficient device knowledge and the multi-faceted issue of device alarms, the latter including both the users’ interactions with alarming devices and their perceptual, cognitive, or motor responses to the devices’ alarms.


Author(s):  
Anne Collins McLaughlin ◽  
Patricia R. DeLucia ◽  
Frank A. Drews ◽  
Monifa Vaughn-Cooke ◽  
Anil Kumar ◽  
...  

Objective We present examples of laboratory and remote studies, with a focus on studies appropriate for medical device design and evaluation. From this review and description of extant options for remote testing, we provide methods and tools to achieve research goals remotely. Background The FDA mandates human factors evaluation of medical devices. Studies show similarities and differences in results collected in laboratories compared to data collected remotely in non-laboratory settings. Remote studies show promise, though many of these are behavioral studies related to cognitive or experimental psychology. Remote usability studies are rare but increasing, as technologies allow for synchronous and asynchronous data collection. Method We reviewed methods of remote evaluation of medical devices, from testing labels and instruction to usability testing and simulated use. Each method was coded for the attributes (e.g., supported media) that need consideration in usability studies. Results We present examples of how published usability studies of medical devices could be moved to remote data collection. We also present novel systems for creating such tests, such as the use of 3D printed or virtual prototypes. Finally, we advise on targeted participant recruitment. Conclusion Remote testing will bring opportunities and challenges to the field of medical device testing. Current methods are adequate for most purposes, excepting the validation of Class III devices. Application The tools we provide enable the remote evaluation of medical devices. Evaluations have specific research goals, and our framework of attributes helps to select or combine tools for valid testing of medical devices.


Author(s):  
Molly Follette Story

An HFES Task Force is considering if, when, which, and how HFES research publications should require the citation of relevant standards, policies, and practices. To support Task Force activities, papers are being written about how to find relevant standards produced by various development organizations (such as ISO, IEC and AAMI) and the content of those standards. This paper describes ISO’s, IEC’s, and AAMI’s standards programs and their technical committees and working groups that produce standards, recommended practices, technical specifications, technical information reports, guides and other publications for medical devices. This paper focuses on those medical device publications that are relevant to human factors engineering practice and explains where and how to find them.


Author(s):  
Merrick F. Kossack ◽  
Andrew W. Gellatly

To meet the FDA's Quality System Regulation, medical device manufacturers must include design validation as part of their design and development activities. However, the regulation does not specify which product requirements must be validated or what methods satisfy a proper design validation process. This paper outlines an approach that device manufacturers can follow to determine which product requirements should undergo design validation testing and what types of testing methods should be used.


Sign in / Sign up

Export Citation Format

Share Document