CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice

Cephalalgia ◽  
2019 ◽  
Vol 39 (14) ◽  
pp. 1762-1775 ◽  
Author(s):  
Edita Navratilova ◽  
Jill Rau ◽  
Janice Oyarzo ◽  
Jason Tien ◽  
Kimberly Mackenzie ◽  
...  

Background Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. Methods Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. Results Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. Conclusions We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. Abbreviations CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache

Cephalalgia ◽  
2021 ◽  
pp. 033310242098168
Author(s):  
Caroline M Kopruszinski ◽  
Joelle M Turnes ◽  
Juliana Swiokla ◽  
Troy J Weinstein ◽  
Todd J Schwedt ◽  
...  

Aim Determine the role of calcitonin-gene related peptide in promoting post-traumatic headache and dysregulation of central pain modulation induced by mild traumatic brain injury in mice. Methods Mild traumatic brain injury was induced in lightly anesthetized male C57BL/6J mice by a weight drop onto a closed and unfixed skull, which allowed free head rotation after the impact. We first determined possible alterations in the diffuse noxious inhibitory controls, a measure of net descending pain inhibition called conditioned pain modulation in humans at day 2 following mild traumatic brain injury. Diffuse noxious inhibitory control was assessed as the latency to a thermally induced tail-flick that served as the test stimulus in the presence of right forepaw capsaicin injection that provided the conditioning stimulus. Post-traumatic headache-like behaviors were assessed by the development of cutaneous allodynia in the periorbital and hindpaw regions after mild traumatic brain injury. We then determined if intraperitoneal fremanezumab, an anti-calcitonin-gene related peptide monoclonal antibody or vehicle administered 2 h after sham or mild traumatic brain injury induction could alter cutaneous allodynia or diffuse noxious inhibitory control responses on day 2 post mild traumatic brain injury. Results In naïve and sham mice, capsaicin injection into the forepaw elevated the latency to tail-flick, reflecting the antinociceptive diffuse noxious inhibitory control response. Periorbital and hindpaw cutaneous allodynia, as well as a loss of diffuse noxious inhibitory control, was observed in mice 2 days after mild traumatic brain injury. Systemic treatment with fremanezumab blocked mild traumatic brain injury-induced cutaneous allodynia and prevented the loss of diffuse noxious inhibitory controls in mice subjected to a mild traumatic brain injury. Interpretation Sequestration of calcitonin-gene related peptide in the initial stages following mild traumatic brain injury blocked the acute allodynia that may reflect mild traumatic brain injury-related post-traumatic headache and, additionally, prevented the loss of net descending inhibition within central pain modulation pathways. As loss of conditioned pain modulation has been linked to multiple persistent pain conditions, dysregulation of descending modulatory pathways may contribute to the persistence of post-traumatic headache. Additionally, evaluation of the conditioned pain modulation/diffuse noxious inhibitory controls response may serve as a biomarker of vulnerability for chronic/persistent pain. These findings suggest that early anti-calcitonin-gene related peptide intervention has the potential to be effective both for the treatment of mild traumatic brain injury-induced post-traumatic headache, as well as inhibiting mechanisms that may promote post-traumatic headache persistence.


2019 ◽  
Vol 14 (4) ◽  
pp. 736
Author(s):  
SaulAlmeida da Silva ◽  
AlmirF de Andrade ◽  
RobsonLuis Oliveira de Amorim ◽  
WellingsonS Paiva

Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1276-1282 ◽  
Author(s):  
Håkan Ashina ◽  
Haidar Muhsen Al-Khazali ◽  
Afrim Iljazi ◽  
Sait Ashina ◽  
Niklas Rye Jørgensen ◽  
...  

Objective To investigate the role of calcitonin gene-related peptide (CGRP) in persistent post-traumatic headache (PTH) attributed to mild traumatic brain injury (TBI). Methods A total of 100 individuals with persistent PTH attributed to mild TBI and 100 age- and gender-matched healthy controls were enrolled between July 2018 and June 2019. Blood was drawn from the antecubital vein and subsequently analyzed using a validated radioimmunoassay for human CGRP. Measurements were performed on coded samples by a board-certified laboratory technician who was blind to clinical information. Results CGRP plasma levels were lower in subjects with persistent PTH (mean, 75.8 pmol/L; SD, 26.4 pmol/L), compared with age- and gender-matched healthy controls (mean, 88.0 pmol/L; SD, 34.1 pmol/L) ( p = 0.04). No correlation was found of CGRP plasma levels with monthly headache days ( r = −0.11; p = 0.27), monthly migraine-like days ( r = 0.15; p = 0.13), headache quality ( r = −0.14; p = 0.15), or a chronic migraine-like headache phenotype ( r = −0.02; p = 0.85). Conclusions CGRP plasma measurements are unlikely a feasible blood-based biomarker of persistent PTH. Future studies should assess whether CGRP plasma measurements can be used to predict development of persistent PTH.


Sign in / Sign up

Export Citation Format

Share Document