scholarly journals The Levels of Calcitonin Gene‐Related Peptide and Substance P in the Plasma of Rats with Traumatic Brain Injury and the Role of Neurogenic Inflammation in the Pathogenesis of TBI

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
hubin Duan ◽  
chunyan Hao ◽  
shuzhen Li
Cephalalgia ◽  
1997 ◽  
Vol 17 (3) ◽  
pp. 166-174 ◽  
Author(s):  
A Ottosson ◽  
L Edvinsson

The aim of the present study was to examine if the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) can stimulate histamine release from mast cells in the dura mater and thereby play a role in cranial vasoregulation and local neurogenic inflammation. Dura mater mast cells were compared with peritoneal mast cells in the rat. Histamine was released from dura mater mast cells by compound 48/80, SP and CGRP but from peritoneal mast cells only by compound 8/80 and SP. NPY and VIP released quite small amounts of histamine from dural mast cells. The release on SP and CGRP from rat dura mater mast cells was blocked by the receptor antagonists FK888 and CGRP8-37 respectively, suggesting receptor mediated release mechanisms. None of the stimuli released histamine from human or porcine dural mast cells, possibly because the sampling procedure injures and incapacitates the cells.


Cephalalgia ◽  
2019 ◽  
Vol 39 (14) ◽  
pp. 1762-1775 ◽  
Author(s):  
Edita Navratilova ◽  
Jill Rau ◽  
Janice Oyarzo ◽  
Jason Tien ◽  
Kimberly Mackenzie ◽  
...  

Background Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. Methods Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. Results Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. Conclusions We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. Abbreviations CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache


Peptides ◽  
1991 ◽  
Vol 12 (2) ◽  
pp. 333-337 ◽  
Author(s):  
Ulrik Pedersen-Bjergaard ◽  
Lars Bøgeskov Nielsen ◽  
Kai Jensen ◽  
Lars Edvinsson ◽  
Inger Jansen ◽  
...  

Cephalalgia ◽  
2006 ◽  
Vol 26 (11) ◽  
pp. 1287-1293 ◽  
Author(s):  
M Alessandri ◽  
L Massanti ◽  
P Geppetti ◽  
G Bellucci ◽  
M Cipriani ◽  
...  

Little is known of mechanism of dialysis headache (DH). As suggested for migraine, a role for neuropeptides has been investigated. Twenty-four patients under haemodialysis were studied. Twelve of them suffered from DH. The remaining patients were headache free. Blood samples for radioimmunoassay of calcitonin gene-related peptide (CGRP) and substance P (SP) were collected from the arteriovenous fistula before and after dialysis treatment. Basal plasma concentrations of CGRP were found to be higher in headache patients. Dialysis significantly decreased CGRP concentrations in both groups. No difference in basal plasma concentrations of SP was observed between groups. At the end of the treatment plasma SP concentrations were reduced in headache-free patients but increased in headache patients. Elevated plasma concentrations of CGRP in patients with DH could represent a biochemical factor contributing to susceptibility to headache. Because of the disputable role of SP in migraine, the significance of the increase of the peptide in plasma during DH remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document