Performance Evaluation of Concrete Pavement Slab Considering Creep Effect by Finite Element Analysis

Author(s):  
Siming Liang ◽  
Ya Wei ◽  
Zehong Wu ◽  
Will Hansen

Creep, as an intrinsic property of concrete material, will inevitably affect the performance of concrete pavement slabs in the field. However, the creep effect on the performances of concrete pavement slabs is far from being fully investigated. In this study, a test set-up is designed to measure the flexural creep of concrete beams exposed to both sealed and drying conditions. The measured flexural creep results are then modeled by the microprestress–solidification theory-based creep model which is incorporated into finite element analysis to evaluate numerically the creep effect on the moisture warping deformation, warping stress, and the total stress under traffic load in concrete slabs. Parameters including slab size, slab thickness, and subgrade modulus are considered. It is found that concrete creep has a significant effect on slab performance. Based on the measured creep properties in this study, the warping deformation of slabs can be reduced by 8–62%, and the warping stress and the total stress can be relaxed by at least 50%. Therefore, it is of importance to incorporate creep effect in analyzing warping deformation and stress generated in concrete pavement slabs. This study also provides a numerical methodology to the current performance evaluation of concrete slabs in the field.

2007 ◽  
Vol 353-358 ◽  
pp. 373-376 ◽  
Author(s):  
Bing Jun Gao ◽  
Xiao Ping Shi ◽  
Hong Yan Liu ◽  
Jin Hong Li

A key problem in engineering application of “design by analysis” approach is how to decompose a total stress field obtained by the finite element analysis into different stress categories defined in the ASME Code III and VIII-2. In this paper, we suggested an approach to separate primary stress with the principle of superposition, in which the structure does not need to be cut into primary structure but analyzed as a whole only with decomposed load. Taking pressurized cylindrical vessel with plate head as example, the approach is demonstrated and discussed in detail. The allowable load determined by the supposed method is a little conservative than that determined by limited load analysis.


Author(s):  
Eric Rohrs ◽  
Manish Paliwal ◽  
D. Gordon Allan

Aseptic loosening of the tibial implant is one of the major reasons of failure in Total Knee Arthroplasty (TKA). The cement viscosity at the time of application to the bone influences the cement penetration and stability of the prosthesis. Four cements of different viscosities and set times were selected for analysis (Simplex-P, DePuy-2, Palacos, and Endurance). Finite element analysis was used to model cement flow and cement mantle resulting from a surgically implanted tibial plate into sawbone open cell blocks simulating tibial cancellous bone (Pacific Research, WA). Frictional stress, pressure, sliding distance, and total stress at the bone-cement-stem interface were studied at the contact interfaces, which may contribute towards construct stability. Palacos had the maximum interface pressure, sliding distance, and total stress, while DePuy-2 displayed the lowest total stress and sliding distance at interface. Simulated flow profile correlated well with the cemented constructs’ radiographic profiles.


Sign in / Sign up

Export Citation Format

Share Document