Motorway Path Planning for Automated Road Vehicles Based on Optimal Control Methods

Author(s):  
Konstantinos Makantasis ◽  
Markos Papageorgiou

A path-planning algorithm for automated road vehicles on multi-lane motorways is derived from the opportune formulation of an optimal control problem. In this framework, the objective function to be minimized contains appropriate respective terms to reflect: the goals of the vehicle advancement; passenger comfort; prevailing traffic rules (e.g., overtaking only from left); and the avoidance of obstacles (other moving vehicles) and of the vehicle departing from the road. Each term is coupled with a weighting factor that reflects its comparative importance. For the numerical solution of the optimal control problem, a very efficient feasible direction algorithm is used. To avoid local minima, a simplified dynamic programming algorithm is also conceived to deliver the initial guess trajectory for the optimal control algorithm. With low computation times, the approach is readily executable within a model-predictive control frame. The performance of the proposed algorithm is illustrated using two typical driving scenarios.

2019 ◽  
Vol 22 (1) ◽  
pp. 64-76
Author(s):  
Fuguo Xu ◽  
Hideki Matsunaga ◽  
Atsushi Kato ◽  
Yuji Yasui ◽  
Tielong Shen

In this article, the optimal control problem for nitrogen oxide emission reduction is investigated for diesel engines with a lean nitrogen oxide trap. First, a control-oriented model is developed based on conservation laws. Then, the optimal control problem is formulated as a multistage decision problem and solved using a dynamic programming algorithm under dynamical model constraints. A trade-off between fuel economy and nitrogen oxide emission is considered in the cost function of optimization. To demonstrate the obtained optimal control scheme, the parameters of the lean nitrogen oxide trap model are identified with data obtained from a GT-power-based diesel engine simulator. The numerical simulation results for two standard driving cycles and a stochastically generated driving cycle in comparison to a conventional logic-based control scheme are provided using the identified model in the MATLAB/Simulink platform.


Robotica ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 137-152
Author(s):  
Hamidreza Heidari ◽  
Martin Saska

SUMMARYQuadrotors are unmanned aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. A key feature required for the use of these vehicles under complex conditions is a technique to analytically solve the problem of trajectory planning. Hence, this paper presents a heuristic approach for optimal path planning that the optimization strategy is based on the indirect solution of the open-loop optimal control problem. Firstly, an adequate dynamic system modeling is considered with respect to a configuration of a commercial quadrotor helicopter. The model predicts the effect of the thrust and torques induced by the four propellers on the quadrotor motion. Quadcopter dynamics is described by differential equations that have been derived by using the Newton–Euler method. Then, a path planning algorithm is developed to find the optimal trajectories that meet various objective functions, such as fuel efficiency, and guarantee the flight stability and high-speed operation. Typically, the necessary condition of optimality for a constrained optimal control problem is formulated as a standard form of a two-point boundary-value problem using Pontryagin’s minimum principle. One advantage of the proposed method can solve a wide range of optimal maneuvers for arbitrary initial and final states relevant to every considered cost function. In order to verify the effectiveness of the presented algorithm, several simulation and experiment studies are carried out for finding the optimal path between two points with different objective functions by using MATLAB software. The results clearly show the effect of the proposed approach on the quadrotor systems.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 33251-33260 ◽  
Author(s):  
Jie Liu ◽  
Wei Han ◽  
Chun Liu ◽  
Haijun Peng

2016 ◽  
Vol 57 (4) ◽  
pp. 461-481
Author(s):  
MARZIYEH MORTEZAEE ◽  
ALIREZA NAZEMI

We consider an approximation scheme using Haar wavelets for solving optimal path planning problems. The problem is first expressed as an optimal control problem. A computational method based on Haar wavelets in the time domain is then proposed for solving the obtained optimal control problem. A Haar wavelets integral operational matrix and a direct collocation method are used to find an approximate optimal trajectory of the original problem. Numerical results are also presented for several examples to demonstrate the applicability and efficiency of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6435
Author(s):  
Chen Chen ◽  
Bing Wu ◽  
Liang Xuan ◽  
Jian Chen ◽  
Tianxiang Wang ◽  
...  

In the last decade, research studies on parking planning mainly focused on path planning rather than trajectory planning. The results of trajectory planning are more instructive for a practical parking process. Therefore, this paper proposes a trajectory planning method in which the optimal autonomous valet parking (AVP) trajectory is obtained by solving an optimal control problem. Additionally, a vehicle kinematics model is established with the consideration of dynamic obstacle avoidance and terminal constraints. Then the parking trajectory planning problem is modeled as an optimal control problem, while the parking time and driving distance are set as the cost function. The homotopic method is used for the expansion of obstacle boundaries, and the Gauss pseudospectral method (GPM) is utilized to discretize this optimal control problem into a nonlinear programming (NLP) problem. In order to solve this NLP problem, sequential quadratic programming is applied. Considering that the GPM is insensitive to the initial guess, an online calculation method of vertical parking trajectory is proposed. In this approach, the offline vertical parking trajectory, which is calculated and stored in advance, is taken as the initial guess of the online calculation. The selection of an appropriate initial guess is based on the actual starting position of parking. A small parking lot is selected as the verification scenario of the AVP. In the validation of the algorithm, the parking trajectory planning is divided into two phases, which are simulated and analyzed. Simulation results show that the proposed algorithm is efficient in solving a parking trajectory planning problem. The online calculation time of the vertical parking trajectory is less than 2 s, which meets the real-time requirement.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document