Static and Dynamic Stresses during Valve Closure of a Bileaflet Mechanical Heart Valve Prosthesis

1991 ◽  
Vol 14 (12) ◽  
pp. 781-788 ◽  
Author(s):  
T.H. Chiang ◽  
H. Lam ◽  
R. Quijano ◽  
R. Donham ◽  
P. Gilliam ◽  
...  

The effect of contact geometry and component compliance on the magnitude, distribution, and state of various types of stresses on a bileaflet mechanical heart valve prosthesis during valve closure was analyzed using an Edwards-Duromedics™ mitral valve as example. Static and dynamic stresses developing on both the leaflet and pivot ball during valve closure were modeled using finite element analysis (FEA). Uniform contact between the leaflet and housing as well as between the pivot ball and pivot slot can significantly reduce both static and dynamic stresses around the contact area. The level of the dynamic flexural stresses can be an order of magnitude higher than that of the static stresses. When both the radial and axial compliance of the housing are taken into consideration, peak dynamic stress was more than 40% less than that generated through the impact between a moving leaflet and a non-compliant rigid housing.

2005 ◽  
Vol 28 (3) ◽  
pp. 256-263 ◽  
Author(s):  
D. Medart ◽  
C. Schmitz ◽  
G. Rau ◽  
H. Reul

Design and in vitro performance of a novel bileaflet mechanical heart valve prosthesis are presented. The novel heart valve exhibits three main design characteristics: (i) The leaflets form a Venturi passage in open position. Thus, a beneficial pressure distribution is obtained and the leaflets are stabilised in opened position. (ii) The orifice inlet is nozzle-shaped. Flow is convectively accelerated and flow separation at the orifice inlet is avoided. (iii) The hinge design facilitates an additional axial movement of the leaflets and leads to a self cleaning effect and enhances washout of the hinges. The design of the leaflet hinges is of main importance for the functional reliability and durability of mechanical heart valves. After manufacturing first prototypes from titanium and polymeric materials the hydrodynamic performance was evaluated according to ISO 5840 and FDA guidelines. Hydrodynamic performance is comparable with the results of commonly available bileaflet mechanical heart valve prostheses. Initial durability tests showed suitable material couples for further long term studies.


2012 ◽  
Vol 569 ◽  
pp. 487-490
Author(s):  
Liang Liang Wu ◽  
Guo Jiang Wan ◽  
Feng Zhou ◽  
Jie Yang ◽  
Nan Huang

The Bileaflet Mechanical Heart Valve (BMHV) has been the most successful replacement mechanical heart valve, and is currently the most commonly implanted mechanical valve. Although the BMHV is an improvement over previous mechanical heart valves, there are still serious associated complications with its use that must be eliminated. After the completion of the processing and surface modification, heart valve ring and heart valve leaflets constitute a single whole with mechanical method to achieve its function process. In order to ensure that the heart valve is stable and reliable in service, it is particularly important to improve the assembly quality. The theoretical analysis and simulation used of ANSYS Workbench software for the behavior of the heart valve assembly have been done, the experimental results were verified by testing apparatus, which is a helpful tool used to simulate the new structure of the heart valve assembly, and play a certain significance to improve the accuracy of the assembly.


2018 ◽  
Vol 268 ◽  
pp. 106-112 ◽  
Author(s):  
Heleen Lameijer ◽  
Ymkje J. van Slooten ◽  
Monique R.M. Jongbloed ◽  
Martijn A. Oudijk ◽  
Marlies A.M. Kampman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document