3D printed honeycomb spacers: Tailoring sandwich structures for enhanced electromagnetic shielding

2018 ◽  
Vol 37 (16) ◽  
pp. 1072-1082 ◽  
Author(s):  
Yi-Sheng Hong ◽  
Xiao-Feng Lu ◽  
Xiao-Lei Zhu ◽  
Kai-Lun Zhang ◽  
Mingji Chen

For the purpose of preventing electromagnetic emission, effective electromagnetic interference shielding materials are actively pursued. In this work, three-dimensional (3D) printing technology was employed to manipulate the honeycomb spacers, which were further assembled into multilayered graphene (GN) film-based sandwich structures. Aiming to tuning the dimensions and shapes of the conductive components in the spacers, various sizes of 3D printed honeycomb frameworks along with different conductive composites were fabricated for understanding the effects of sandwich structures and components on the electromagnetic interference shielding. By tailoring the multiple reflection of conductive interface and absorption of spacer, the as-fabricated electromagnetic interference shielding sandwich structures with a thickness of 2 mm shows considerably high shielding effectiveness (49–54.5 dB) in the X-band. With incorporating the carbon nanotube/plasticine composite into the 3D printed honeycomb structures, the tunable permittivity of the composites and designable structure of 3D printed spacer allow for substantially tuning the electromagnetic interference shielding performance in the sandwich structures. The results exhibit that both spacer thickness and the ratios of carbon nanotube-based plasticine composite to 3D printed honeycomb structures play the critical role in dominating the absorption and reflection effectiveness, suggesting novel strategy for fabricating advanced high-performance electromagnetic interference shielding structures.

2018 ◽  
Vol 52 (24) ◽  
pp. 3341-3350 ◽  
Author(s):  
Nuray Ucar ◽  
Burçak Karagüzel Kayaoğlu ◽  
Arınc Bilge ◽  
Gunseli Gurel ◽  
Pınar Sencandan ◽  
...  

Carbon fabric composite is used in technical applications such as aircrafts in which electromagnetic shielding (electromagnetic interference–shielding effectiveness) is required. Traditionally, metallic coatings or metal plates are used for electromagnetic shielding, however, conductive filler-filled composite is also alternative to metal sheets due to its light weight. In the literatures, there are studies about effect carbon nanotube and graphene oxide flakes on electromagnetic interference; however, there are no studies encountered that search the effect of carbon nanotube/graphene oxide fiber and alignment of graphene oxide fiber on electromagnetic interference. Thus, in this study, fabrication of light-weight carbon fabric/epoxy composite filled with graphene oxide fiber, reduced graphene oxide fiber and multiwalled carbon nanotube and alignment of graphene oxide fiber was studied for the first time for both electromagnetic shielding (electromagnetic interference–shielding effectiveness) and electrical conductivity. It was found that reduced graphene oxide with two layers at the same alignment (0–0) leads to increment in the electromagnetic interference–shielding effectiveness value, while reduced graphene oxide with opposite alignment (0–90) leads to decrease in the electromagnetic interference–shielding effectiveness value. Opposite to literatures for graphene oxide flakes, highly rough surface of graphene oxide fiber and reduced graphene oxide fiber causes a deterioration in electromagnetic interference–shielding effectiveness due to disruptive multiple reflections resulted from highly rough surface of graphene oxide fiber, which causes multiple reflection effect. Multiwalled carbon nanotube generally provides higher electromagnetic interference–shielding effectiveness than graphene-based fiber because it has higher conductivity and has no disruptive effect of crimpy surface as graphene oxide fiber. Multiwalled carbon nanotube loading of 15 wt% results to 32 dB electromagnetic interference–shielding effectiveness, which is considered an adequate and moderate level of shielding for many applications.


RSC Advances ◽  
2017 ◽  
Vol 7 (18) ◽  
pp. 10841-10847 ◽  
Author(s):  
Yuto Kato ◽  
Masahiro Horibe ◽  
Seisuke Ata ◽  
Takeo Yamada ◽  
Kenji Hata

Flexible and stretchable electromagnetic-interference shielding sheets with high performance of shielding and stretchability are realized using long SWCNTs as fillers.


Sign in / Sign up

Export Citation Format

Share Document