From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding

Author(s):  
Qinniu Lv ◽  
Xingyu Tao ◽  
Shaohong Shi ◽  
Yijun Li ◽  
Ning Chen
2018 ◽  
Vol 37 (16) ◽  
pp. 1072-1082 ◽  
Author(s):  
Yi-Sheng Hong ◽  
Xiao-Feng Lu ◽  
Xiao-Lei Zhu ◽  
Kai-Lun Zhang ◽  
Mingji Chen

For the purpose of preventing electromagnetic emission, effective electromagnetic interference shielding materials are actively pursued. In this work, three-dimensional (3D) printing technology was employed to manipulate the honeycomb spacers, which were further assembled into multilayered graphene (GN) film-based sandwich structures. Aiming to tuning the dimensions and shapes of the conductive components in the spacers, various sizes of 3D printed honeycomb frameworks along with different conductive composites were fabricated for understanding the effects of sandwich structures and components on the electromagnetic interference shielding. By tailoring the multiple reflection of conductive interface and absorption of spacer, the as-fabricated electromagnetic interference shielding sandwich structures with a thickness of 2 mm shows considerably high shielding effectiveness (49–54.5 dB) in the X-band. With incorporating the carbon nanotube/plasticine composite into the 3D printed honeycomb structures, the tunable permittivity of the composites and designable structure of 3D printed spacer allow for substantially tuning the electromagnetic interference shielding performance in the sandwich structures. The results exhibit that both spacer thickness and the ratios of carbon nanotube-based plasticine composite to 3D printed honeycomb structures play the critical role in dominating the absorption and reflection effectiveness, suggesting novel strategy for fabricating advanced high-performance electromagnetic interference shielding structures.


RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18476-18482
Author(s):  
Licui Wang ◽  
Zhaoxin Xie ◽  
Yanhu Zhan ◽  
Xuehui Hao ◽  
Yanyan Meng ◽  
...  

It is of great significance for electromagnetic interference (EMI) shielding materials to fulfill long-lasting service requirements.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinyu Wu ◽  
Tingxiang Tu ◽  
Yang Dai ◽  
Pingping Tang ◽  
Yu Zhang ◽  
...  

Highlights 3D printing of MXene frames with tunable electromagnetic interference shielding efficiency is demonstrated. Highly conductive MXene frames are reinforced by cross-linking with aluminum ions. Electromagnetic wave is visualized by electromagnetic-thermochromic MXene patterns. Abstract The highly integrated and miniaturized next-generation electronic products call for high-performance electromagnetic interference (EMI) shielding materials to assure the normal operation of their closely assembled components. However, the most current techniques are not adequate for the fabrication of shielding materials with programmable structure and controllable shielding efficiency. Herein, we demonstrate the direct ink writing of robust and highly conductive Ti3C2Tx MXene frames with customizable structures by using MXene/AlOOH inks for tunable EMI shielding and electromagnetic wave-induced thermochromism applications. The as-printed frames are reinforced by immersing in AlCl3/HCl solution to remove the electrically insulating AlOOH nanoparticles, as well as cross-link the MXene sheets and fuse the filament interfaces with aluminum ions. After freeze-drying, the resultant robust and porous MXene frames exhibit tunable EMI shielding efficiencies in the range of 25–80 dB with the highest electrical conductivity of 5323 S m−1. Furthermore, an electromagnetic wave-induced thermochromic MXene pattern is assembled by coating and curing with thermochromic polydimethylsiloxane on a printed MXene pattern, and its color can be changed from blue to red under the high-intensity electromagnetic irradiation. This work demonstrates a direct ink printing of customizable EMI frames and patterns for tuning EMI shielding efficiency and visualizing electromagnetic waves.


Author(s):  
Bin Yuan ◽  
Shuangxin Lai ◽  
Jianjun Li ◽  
Li Li ◽  
Shibing Bai

Humans have used animal leather materials for thousands of years. Nowadays, the disposal of Cr-containing leather wastes (LWs) has become an urgent problem. Herein, by adopting simultaneously conventional freeze-drying and...


Nanoscale ◽  
2021 ◽  
Author(s):  
Binguo Liu ◽  
Qi Zhang ◽  
Yuanhui Huang ◽  
Dong Liu ◽  
Wei Pan ◽  
...  

Flexible and wearable electronic technology is in great demand with the rising of smart electronic systems. Among this, exploring multifunctional with high performance at low cost has attracted extensive attention...


Sign in / Sign up

Export Citation Format

Share Document