Effects of grass type on hydraulic response of the three-layer landfill cover system

2021 ◽  
pp. 0734242X2110612
Author(s):  
Song Feng ◽  
Hong Wei Liu ◽  
Qi Peng Cai ◽  
Wen Bin Jian

Soil column tests were conducted to investigate the effects of grass type on water infiltration in a three-layer landfill cover under drying and wetting conditions. Five soil columns were prepared, including one bare, two Bermuda grass-planted and the other two vetiver-planted. During the drying period, the suction of vetiver-planted soil column was the largest, while that of bare case was the lowest. During the wetting period, the infiltration rate shows a bimodal form due to the contrasting hydraulic properties of different soil layers. The infiltration rate of vetiver-planted soil column was the lowest, followed by Bermuda grass-planted and bare cases. Correspondingly, the vetiver-planted soil column retained the maximum suction and the deepest ponding depth during rainfall. This was likely due to the larger leaf area and deeper roots of vetiver than those of Bermuda grass, thus inducing the maximum initial suction by root water uptake before rainfall and reducing the water permeability by root occupations of soil pores. These results show that vetiver is more effective than Bermuda grass to reduce water percolation through the three-layer landfill cover.

2016 ◽  
Vol 142 (5) ◽  
pp. 04016007 ◽  
Author(s):  
Charles W. W. Ng ◽  
Jason L. Coo ◽  
Zhong Kui Chen ◽  
Rui Chen

2019 ◽  
Vol 20 (7) ◽  
pp. 546-552
Author(s):  
Sandar Lin ◽  
Charles W.W. Ng ◽  
Jie Xu ◽  
Rui Chen ◽  
Jian Liu ◽  
...  

2014 ◽  
Vol 644-650 ◽  
pp. 5383-5386
Author(s):  
Shen Kai Huang ◽  
Peng Fei Gu ◽  
Xin Yu Zhao ◽  
Qing Bao Pei ◽  
Jin Long Gao

Using a soil column experiments to analyze the influence of different density of one dimension vertical infiltration of water infiltration rate, cumulative infiltration and wetting front. The experimental results showed that the bulk density of the infiltration rate, cumulative infiltration and wetting front has a significant impact. Infiltration rate, cumulative infiltration and wetting front were decreased with increasing density in the same period of infiltration. The greater the soil bulk capacity, the larger the infiltration decrease ration μ and η, respectively compared to the based accumulative infiltration and the based wetting front depth.


2016 ◽  
Vol 44 ◽  
pp. 189-196 ◽  
Author(s):  
Éva Ujaczki ◽  
Viktória Feigl ◽  
Mónika Molnár ◽  
Emese Vaszita ◽  
Nikolett Uzinger ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2017 ◽  
Vol 69 ◽  
pp. 281-288 ◽  
Author(s):  
Marcel Schulte ◽  
Maik A. Jochmann ◽  
Tobias Gehrke ◽  
Andrea Thom ◽  
Tim Ricken ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document